Difference between revisions of "Vornicu-Schur Inequality"
m |
(→External Links) |
||
Line 6: | Line 6: | ||
Schur's Inequality follows from Vornicu-Schur by setting <math>x=a</math>, <math>y=b</math>, <math>z=c</math>, <math>k = 1</math>, and <math>f(m) = m^r</math>. | Schur's Inequality follows from Vornicu-Schur by setting <math>x=a</math>, <math>y=b</math>, <math>z=c</math>, <math>k = 1</math>, and <math>f(m) = m^r</math>. | ||
− | |||
− | |||
− | |||
==References== | ==References== | ||
*Vornicu, Valentin; ''Olimpiada de Matematica... de la provocare la experienta''; GIL Publishing House; Zalau, Romania.</ref> | *Vornicu, Valentin; ''Olimpiada de Matematica... de la provocare la experienta''; GIL Publishing House; Zalau, Romania.</ref> |
Revision as of 14:53, 4 September 2010
The Vornicu-Schur Inequality is a generalization of Schur's Inequality discovered by the Romanian mathematician Valentin Vornicu.
Statement
Consider real numbers such that and either or . Let be a positive integer and let be a function from the reals to the nonnegative reals that is either convex or monotonic. Then
Schur's Inequality follows from Vornicu-Schur by setting , , , , and .
References
- Vornicu, Valentin; Olimpiada de Matematica... de la provocare la experienta; GIL Publishing House; Zalau, Romania.</ref>