Difference between revisions of "2008 AIME II Problems/Problem 7"
m (→Solution 2: typo fix) |
|||
Line 22: | Line 22: | ||
[[Category:Intermediate Algebra Problems]] | [[Category:Intermediate Algebra Problems]] | ||
+ | {{MAA Notice}} |
Revision as of 22:34, 4 July 2013
Problem
Let , , and be the three roots of the equation Find .
Solution
Solution 1
By Vieta's formulas, we have , and so the desired answer is . Additionally, using the factorization we have that . By Vieta's again,
Solution 2
Vieta's formulas gives . Since is a root of the polynomial, , and the same can be done with . Therefore, we have yielding the answer .
See also
2008 AIME II (Problems • Answer Key • Resources) | ||
Preceded by Problem 6 |
Followed by Problem 8 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
All AIME Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.