Difference between revisions of "2007 Alabama ARML TST Problems/Problem 6"

(New page: ==Problem== If <math>r</math> is a root of <math>x^2+x+6</math>, then compute the value of <cmath>r^3+2r^2+7r+17.</cmath> ==Solution== Note that <math>r^2+r+6=0</math>. Thus, <math>r^3+2...)
 
Line 8: Line 8:
  
 
==See also==
 
==See also==
{{ARML box|year=2006|state=Alabama|before=First Question|num-a=2}}
+
{{ARML box|year=2007|state=Alabama|num-b=5|num-a=7}}

Revision as of 23:12, 16 June 2008

Problem

If $r$ is a root of $x^2+x+6$, then compute the value of

\[r^3+2r^2+7r+17.\]

Solution

Note that $r^2+r+6=0$. Thus, $r^3+2r^2+7r+17 = (r^3+r^2+6r)+(r^2+r+6)+11 =$ $(r+1)(r^2+r+6)+11 = (r+1)(0)+11 = 11$.

See also

2007 Alabama ARML TST (Problems)
Preceded by:
Problem 5
Followed by:
Problem 7
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15