Difference between revisions of "1966 AHSME Problems/Problem 8"
Line 15: | Line 15: | ||
The distance between the centers of the circles (points <math>P</math> and <math>O</math>) is the sum of the heights of <math>\triangle OAB</math> and <math>\triangle PAB</math>, which is <math>6 + 15 = 21 \Rightarrow \textbf{(B)}</math> | The distance between the centers of the circles (points <math>P</math> and <math>O</math>) is the sum of the heights of <math>\triangle OAB</math> and <math>\triangle PAB</math>, which is <math>6 + 15 = 21 \Rightarrow \textbf{(B)}</math> | ||
+ | {{MAA Notice}} |
Revision as of 11:40, 5 July 2013
Problem
The length of the common chord of two intersecting circles is feet. If the radii are feet and feet, a possible value for the distance between the centers of the circles, expressed in feet, is:
Solution
Let be the center of the circle of radius and be the center of the circle of radius . Chord feet.
feet, since they are radii of the same circle. Hence, is isoceles with base . The height of from to is
Similarly, . Therefore, is also isoceles with base . The height of the triangle from to is
The distance between the centers of the circles (points and ) is the sum of the heights of and , which is The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.