Difference between revisions of "2008 IMO Problems/Problem 3"
Line 3: | Line 3: | ||
The main idea is to take a gaussian prime <math>a+bi</math> and multiply it by a "twice as small" <math>c+di</math> to get <math>n+i</math>. The rest is just making up the little details. | The main idea is to take a gaussian prime <math>a+bi</math> and multiply it by a "twice as small" <math>c+di</math> to get <math>n+i</math>. The rest is just making up the little details. | ||
− | For each sufficiently large prime <math>p</math> of the form <math>4k+1</math>, we shall find a corresponding <math>n</math> satisfying the required condition with the prime number in question being <math>p</math>. Since there exist infinitely many such primes and, for each of them, <math>n \ge \sqrt{p-1}</math>, we will have found infinitely many distinct <math>n</math> satisfying the problem. | + | For each {\em sufficiently large} prime <math>p</math> of the form <math>4k+1</math>, we shall find a corresponding <math>n</math> satisfying the required condition with the prime number in question being <math>p</math>. Since there exist infinitely many such primes and, for each of them, <math>n \ge \sqrt{p-1}</math>, we will have found infinitely many distinct <math>n</math> satisfying the problem. |
Take a prime <math>p</math> of the form <math>4k+1</math> and consider its "sum-of-two squares" representation <math>p=a^2+b^2</math>, which we know to exist for all such primes. As <math>a\ne b</math>, assume without loss of generality that <math>b>a</math>. If <math>a=1</math>, then <math>n=b</math> is our guy, and <math>p=n^2+1 > 2n+\sqrt{2n}</math> as long as <math>p</math> (and hence <math>n</math>) is large enough. Let's see what happens when <math>b>a>1</math>. | Take a prime <math>p</math> of the form <math>4k+1</math> and consider its "sum-of-two squares" representation <math>p=a^2+b^2</math>, which we know to exist for all such primes. As <math>a\ne b</math>, assume without loss of generality that <math>b>a</math>. If <math>a=1</math>, then <math>n=b</math> is our guy, and <math>p=n^2+1 > 2n+\sqrt{2n}</math> as long as <math>p</math> (and hence <math>n</math>) is large enough. Let's see what happens when <math>b>a>1</math>. | ||
Line 23: | Line 23: | ||
<cmath>|d| \le \frac{b-1}{2}.</cmath> | <cmath>|d| \le \frac{b-1}{2}.</cmath> | ||
− | <cmath><cmath>n^2+1 = (a^2+b^2)(c^2+d^2) \le p\left( \frac{(a-1)^2}{4}+\frac{(b-1)^2}{4} \right).< | + | <cmath></cmath>n^2+1 = (a^2+b^2)(c^2+d^2) \le p\left( \frac{(a-1)^2}{4}+\frac{(b-1)^2}{4} \right).<cmath> </cmath> |
− | Before we proceed, we would like to show that <math>a+b-1 > \sqrt{p}</math>. Observe that the function <math>x+\sqrt{p-x^2}</math> over <math>x\in(2,\sqrt{p-4})</math> reaches its minima on the ends, so <math>a+b</math> given <math>a^2+b^2=p</math> is minimized for <math>a = 2</math>, where it equals <math>2+\sqrt{p-2^2}</math>. So we want to show that | + | Before we proceed, we would like to show that <math>a+b-1 > \sqrt{p}</math>. Observe that the function <math>x+\sqrt{p-x^2}</math> over <math>x\in(2,\sqrt{p-4})</math> reaches its minima on the ends, so <math>a+b</math> given <math>a^2+b^2=p</math> is minimized for <math>a = 2</math>, where it equals <math>2+\sqrt{p-2^2}</math>. So we want to show that <cmath>2+\sqrt{p-4} > \sqrt{p} + 1,</cmath> |
− | which | + | which obviously holds for large <math>p</math>. |
Now armed with <math>a+b-1>\sqrt{p}</math> and (2), we get | Now armed with <math>a+b-1>\sqrt{p}</math> and (2), we get | ||
− | <cmath>4(n^2+1) \le p( | + | <cmath>4(n^2+1) \le p( a^2+b^2 - 2(a+b-1) ) \le p( p-2\sqrt{p} ) < u^2(u-1)^2,</cmath> |
where <math>u=\sqrt{p}.</math> | where <math>u=\sqrt{p}.</math> | ||
+ | |||
+ | Finally, | ||
+ | <cmath>u^2(u-1)^2 > 4n^2+4 > 4n^2\Lefetarrow \ | ||
+ | u(u-1) > 2n \Leftarrow u > \sqrt{2n} + \frac{1}{2} \Lefetarrow \ | ||
+ | p = u^2 > 2n + \sqrt{2n}.</cmath> |
Revision as of 00:05, 4 September 2008
(still editing...)
The main idea is to take a gaussian prime and multiply it by a "twice as small"
to get
. The rest is just making up the little details.
For each {\em sufficiently large} prime of the form
, we shall find a corresponding
satisfying the required condition with the prime number in question being
. Since there exist infinitely many such primes and, for each of them,
, we will have found infinitely many distinct
satisfying the problem.
Take a prime of the form
and consider its "sum-of-two squares" representation
, which we know to exist for all such primes. As
, assume without loss of generality that
. If
, then
is our guy, and
as long as
(and hence
) is large enough. Let's see what happens when
.
Since and
are (obviously) co-prime, there must exist integers
and
such that
In fact, if
and
are such numbers, then
and
work as well for any integer
, so we can assume that
.
Define and let's see what happens. Notice that
.
If , then from (1), we see that
must divide
and hence
. In turn,
and
. Therefore,
and so
, from where
. Finally,
and the case
is cleared.
We can safely assume now that
As
implies
, we have
so
n^2+1 = (a^2+b^2)(c^2+d^2) \le p\left( \frac{(a-1)^2}{4}+\frac{(b-1)^2}{4} \right).
Before we proceed, we would like to show that . Observe that the function
over
reaches its minima on the ends, so
given
is minimized for
, where it equals
. So we want to show that
which obviously holds for large
.
Now armed with and (2), we get
where
Finally,
\[u^2(u-1)^2 > 4n^2+4 > 4n^2\Lefetarrow \\ u(u-1) > 2n \Leftarrow u > \sqrt{2n} + \frac{1}{2} \Lefetarrow \\ p = u^2 > 2n + \sqrt{2n}.\] (Error compiling LaTeX. Unknown error_msg)