Difference between revisions of "User:Temperal/The Problem Solver's Resource1"
(hm) |
(radians are more awesome) |
||
Line 2: | Line 2: | ||
{{User:Temperal/testtemplate|page 1}} | {{User:Temperal/testtemplate|page 1}} | ||
==<span style="font-size:20px; color: blue;">Trigonometric Formulas</span>== | ==<span style="font-size:20px; color: blue;">Trigonometric Formulas</span>== | ||
− | Note that all measurements are in | + | Note that all measurements are in radians. |
===Basic Facts=== | ===Basic Facts=== | ||
<math>\sin (-A)=-\sin A</math> | <math>\sin (-A)=-\sin A</math> | ||
Line 10: | Line 10: | ||
<math>\tan (-A)=-\tan A</math> | <math>\tan (-A)=-\tan A</math> | ||
− | <math>\sin ( | + | <math>\sin (\pi-A) = \sin A</math> |
− | <math>\cos ( | + | <math>\cos (\pi-A) = -\cos A</math> |
− | <math>\cos ( | + | <math>\cos (2\pi-A) = \cos A</math> |
− | <math>\tan ( | + | <math>\tan (\pi+A) = \tan A</math> |
− | <math>\cos ( | + | <math>\cos (\pi/2-A)=\sin A</math> |
− | <math>\tan ( | + | <math>\tan (\pi/2-A)=\cot A</math> |
− | <math>\sec{ | + | <math>\sec{\pi/2-A}=\csc A</math> |
− | <math>\cos ( | + | <math>\cos (\pi/2-A) = \sin A</math> |
− | <math>\cot ( | + | <math>\cot (\pi/2-A)=\tan A</math> |
− | <math>\csc ( | + | <math>\csc (\pi/2-A)=\sec A</math> |
<math>\sin^2 A+\cos^2 A=1</math> | <math>\sin^2 A+\cos^2 A=1</math> | ||
Line 44: | Line 44: | ||
<math>\tan \frac{A}{2}=\frac{1-\cos A}{\sin A}=\frac{\sin A}{1+\cos A}</math> | <math>\tan \frac{A}{2}=\frac{1-\cos A}{\sin A}=\frac{\sin A}{1+\cos A}</math> | ||
− | ===Terminology=== | + | ===Terminology and Notation=== |
<math>\cot A=\frac{1}{\tan A}</math>, but <math>\cot A\ne\tan^{-1} A}</math>. | <math>\cot A=\frac{1}{\tan A}</math>, but <math>\cot A\ne\tan^{-1} A}</math>. | ||
Revision as of 18:25, 10 January 2009
Introduction | Other Tips and Tricks | Methods of Proof | You are currently viewing page 1. |
Trigonometric Formulas
Note that all measurements are in radians.
Basic Facts
Terminology and Notation
, but $\cot A\ne\tan^{-1} A}$ (Error compiling LaTeX. Unknown error_msg).
, but $\csc A\ne\sin^{-1} A}$ (Error compiling LaTeX. Unknown error_msg).
, but $\sec A\ne\cos^{-1} A}$ (Error compiling LaTeX. Unknown error_msg).
Also:
Sum of Angle Formulas
or or
Pythagorean identities
for all .
Other Formulas
Law of Cosines
In a triangle with sides , , and opposite angles , , and , respectively,
and:
Law of Sines
Law of Tangents
For any and such that ,
Area of a Triangle
The area of a triangle can be found by