Difference between revisions of "2001 AMC 12 Problems/Problem 9"
(→Solution) |
m (→Problem) |
||
Line 1: | Line 1: | ||
== Problem == | == Problem == | ||
− | Let <math>f</math> be a function satisfying <math>f(xy) = \frac{f(x)}y</math> for all | + | Let <math>f</math> be a function satisfying <math>f(xy) = \frac{f(x)}y</math> for all positive real numbers <math>x</math> and <math>y</math>, and <math>f(500) =3</math>. What is <math>f(600)</math>? |
<math>(\mathrm{A})\ 1 \qquad (\mathrm{B})\ 2 \qquad (\mathrm{C})\ \frac52 \qquad (\mathrm{D})\ 3 \qquad (\mathrm{E})\ \frac{18}5</math> | <math>(\mathrm{A})\ 1 \qquad (\mathrm{B})\ 2 \qquad (\mathrm{C})\ \frac52 \qquad (\mathrm{D})\ 3 \qquad (\mathrm{E})\ \frac{18}5</math> |
Revision as of 00:52, 8 February 2009
Problem
Let be a function satisfying for all positive real numbers and , and . What is ?
Solution
, so the answer is .