Difference between revisions of "Shoelace"

(New page: Let <math>(x_1, y_1)</math>, <math>(x_2, y_2)</math>, <math>(x_3, y_3)</math>,..., <math>(x_n, y_n)</math> be the coordinates of the vertices, arranged counterclockwise, of an n-sided con...)
 
Line 1: Line 1:
 
Let <math>(x_1, y_1)</math>, <math>(x_2, y_2)</math>, <math>(x_3, y_3)</math>,..., <math>(x_n, y_n)</math> be the coordinates of the vertices, arranged  counterclockwise, of an n-sided convex polygon. Then the area of the polygon is given by the formula
 
Let <math>(x_1, y_1)</math>, <math>(x_2, y_2)</math>, <math>(x_3, y_3)</math>,..., <math>(x_n, y_n)</math> be the coordinates of the vertices, arranged  counterclockwise, of an n-sided convex polygon. Then the area of the polygon is given by the formula
  
<math>(x_1y_2 + x_2y_3 + x_3y_4 + ... + x_{n-1}y_n+ x_ny_1 - x_2y_1 - x_3y_2 - x_4y_3 - ... x_ny_{n-1}- x_1y_n)/2</math>
+
<math>(x_1y_2 + x_2y_3 + x_3y_4 + ... + x_{n-1}y_n+ x_ny_1 - x_2y_1 - x_3y_2 - x_4y_3 - ... - x_ny_{n-1}- x_1y_n)/2</math>

Revision as of 06:50, 9 May 2009

Let $(x_1, y_1)$, $(x_2, y_2)$, $(x_3, y_3)$,..., $(x_n, y_n)$ be the coordinates of the vertices, arranged counterclockwise, of an n-sided convex polygon. Then the area of the polygon is given by the formula

$(x_1y_2 + x_2y_3 + x_3y_4 + ... + x_{n-1}y_n+ x_ny_1 - x_2y_1 - x_3y_2 - x_4y_3 - ... - x_ny_{n-1}- x_1y_n)/2$