Difference between revisions of "Inequality Introductory Problem 2"

(First Solution)
(First Solution)
 
Line 5: Line 5:
 
== Solutions ==
 
== Solutions ==
  
===First Solution===
+
===Solution===
  
Working backwards from the next inequality we solve the origninal one:
+
Multiply both sides by <math>2</math>:
<math>
+
<center>
\begin{eqnarray*}
+
<math>2\sum_{k=1}^{n}a_{k}^{2}\ge 2(a_{1}a_{2}+a_{2}a_{3}+\cdots+a_{n-1}a_{n}+a_{n}a_{1})</math>
\left(\sum_{k=1}^{n-1} (a_k-a_{k+1})^2\right) + (a_n-a_1)^2&\ge& 0\\
+
</center>
2\cdot \left(\sum_{k=1}^n a_k^2\right) - 2\left(\left(\sum_{k=1}^{n-1} a_ka_{k+1}\right) +a_na_1\right)&\ge& 0\\
+
 
2\cdot \left(\sum_{k=1}^n a_k^2\right) &\ge& 2\left(\left(\sum_{k=1}^{n-1} a_ka_{k+1}\right) +a_na_1\right)\\
+
By subtracting each side by the RHS, you result in:
2\cdot \sum_{k=1}^n a_k^2 &\ge& 2(a_1a_2+a_2a_3+\cdots+a_{n-1}a_n+a_na_1)\\
+
 
\sum_{k=1}^n a_k^2 &\ge& (a_1a_2+a_2a_3+\cdots+a_{n-1}a_n+a_na_1)
+
<center>
\end{eqnarray*}
+
<math>(a_1-a_n)^2+(a_2-a_1)^2+(a_3-a_2)^2+\cdots+(a_n-a_{n-1})^2\ge 0</math>
</math>
+
</center>
 +
 
 +
Which is always true.

Latest revision as of 14:18, 23 May 2009

Problem

Show that $\sum_{k=1}^{n}a_k^2 \geq a_1a_2+a_2a_3+\cdots+a_{n-1}a_n+a_na_1$.

Solutions

Solution

Multiply both sides by $2$:

$2\sum_{k=1}^{n}a_{k}^{2}\ge 2(a_{1}a_{2}+a_{2}a_{3}+\cdots+a_{n-1}a_{n}+a_{n}a_{1})$

By subtracting each side by the RHS, you result in:

$(a_1-a_n)^2+(a_2-a_1)^2+(a_3-a_2)^2+\cdots+(a_n-a_{n-1})^2\ge 0$

Which is always true.