Difference between revisions of "2008 AMC 12B Problems/Problem 17"
Line 1: | Line 1: | ||
− | Let the coordinates of <math>A</math> be <math>(m, m^2)</math> and the coordinates of <math>C</math> be <math>(n, n^2)</math>. Since the line <math>AB</math> is parallel to the <math>x</math>-axis, the coordinates of <math>B</math> must | + | Let the coordinates of <math>A</math> be <math>(m, m^2)</math> and the coordinates of <math>C</math> be <math>(n, n^2)</math>. Since the line <math>AB</math> is parallel to the <math>x</math>-axis, the coordinates of <math>B</math> must be <math>(-m, m^2)</math>. |
Then the slope of line <math>AC</math> is <math>\frac{m^2-n^2}{m-n}=\frac{(m+n)(m-n)}{m-n}=m+n</math>. | Then the slope of line <math>AC</math> is <math>\frac{m^2-n^2}{m-n}=\frac{(m+n)(m-n)}{m-n}=m+n</math>. | ||
The slope of line <math>BC</math> is <math>\frac{m^2-n^2}{-m-n}=-\frac{(m+n)(m-n)}{m+n}=-(m-n)</math>. | The slope of line <math>BC</math> is <math>\frac{m^2-n^2}{-m-n}=-\frac{(m+n)(m-n)}{m+n}=-(m-n)</math>. |
Revision as of 01:34, 23 December 2009
Let the coordinates of be and the coordinates of be . Since the line is parallel to the -axis, the coordinates of must be . Then the slope of line is . The slope of line is .
Supposing , then is perpendicular to and, it follows, to the -axis, making a segment of the line x=m. But that would mean that the coordinates of , contradicting the given that points and are distinct. So is not . By a similar logic, neither is .
This means that and is perpendicular to . So the slope of is the negative reciprocal of the slope of , yielding .
Because is the length of the altitude of triangle from , and is the length of , the area of . Since , . Substituting, , whose digits sum to .