Difference between revisions of "2004 AMC 10B Problems/Problem 24"
Line 2: | Line 2: | ||
<math>\text{(A) } \dfrac{9}{8} \quad \text{(B) } \dfrac{5}{3} \quad \text{(C) } 2 \quad \text{(D) } \dfrac{17}{7} \quad \text{(E) } \dfrac{5}{2}</math> | <math>\text{(A) } \dfrac{9}{8} \quad \text{(B) } \dfrac{5}{3} \quad \text{(C) } 2 \quad \text{(D) } \dfrac{17}{7} \quad \text{(E) } \dfrac{5}{2}</math> | ||
+ | |||
+ | |||
+ | == Solution == | ||
+ | |||
+ | Set <math>BD</math>'s length as <math>x</math>. <math>CD</math>'s length must also be <math>x</math>. Using Ptolemy's Theorem, <math>7x+8x=9(AD)</math>. The ratio is <math> \boxed{\frac{5}{3}}\implies(C)</math> |
Revision as of 11:34, 1 May 2011
In triangle we have , , . Point is on the circumscribed circle of the triangle so that bisects angle . What is the value of ?
Solution
Set 's length as . 's length must also be . Using Ptolemy's Theorem, . The ratio is