Difference between revisions of "2010 AMC 12A Problems/Problem 3"

(Problem 3)
(Problem 3)
Line 4: Line 4:
 
<math>\textbf{(A)}\ 4 \qquad \textbf{(B)}\ 5 \qquad \textbf{(C)}\ 6 \qquad \textbf{(D)}\ 8 \qquad \textbf{(E)}\ 10</math>
 
<math>\textbf{(A)}\ 4 \qquad \textbf{(B)}\ 5 \qquad \textbf{(C)}\ 6 \qquad \textbf{(D)}\ 8 \qquad \textbf{(E)}\ 10</math>
  
[[2010 AMC 12A Problems/Problem 3|Solution]]
+
== Solution ==
 +
Let <math>EF = FG = GF = HE = s</math>, let <math>AD = BC = h</math>, and let <math>AB = CD = x</math>.
 +
 
 +
 
 +
<math>.2s^2 = hs</math>
 +
 
 +
<math>s = 5h</math>
 +
 
 +
<math>.5hx = hs</math>
 +
 
 +
<math>x = 2s = 10h</math>
 +
 
 +
 
 +
<math>\frac{AB}{AD} = \frac{x}{h} = \boxed{10\ \textbf{(E)}}</math>

Revision as of 12:25, 11 February 2010

Problem 3

Rectangle $ABCD$, pictured below, shares $50\%$ of its area with square $EFGH$. Square $EFGH$ shares $20\%$ of its area with rectangle $ABCD$. What is $\frac{AB}{AD}$?

$\textbf{(A)}\ 4 \qquad \textbf{(B)}\ 5 \qquad \textbf{(C)}\ 6 \qquad \textbf{(D)}\ 8 \qquad \textbf{(E)}\ 10$

Solution

Let $EF = FG = GF = HE = s$, let $AD = BC = h$, and let $AB = CD = x$.


$.2s^2 = hs$

$s = 5h$

$.5hx = hs$

$x = 2s = 10h$


$\frac{AB}{AD} = \frac{x}{h} = \boxed{10\ \textbf{(E)}}$