Difference between revisions of "2010 AMC 12A Problems/Problem 23"
(→Solution) |
(→Solution) |
||
Line 14: | Line 14: | ||
First, we find that the number of factors of <math>10</math> in <math>90!</math> is equal to <math>\left\lfloor \frac{90}5\right\rfloor+\left\lfloor\frac{90}{25}\right\rfloor=18+3=21</math>. Let <math>N=\frac{90!}{10^{21}}</math>. The <math>n</math> we want is therefore the last two digits of <math>N</math>, or <math>N\pmod{100}</math>. Since there is clearly an excess of factors of 2, we know that <math>N\equiv 0\pmod 4</math>, so it remains to find <math>N\pmod{25}</math>. | First, we find that the number of factors of <math>10</math> in <math>90!</math> is equal to <math>\left\lfloor \frac{90}5\right\rfloor+\left\lfloor\frac{90}{25}\right\rfloor=18+3=21</math>. Let <math>N=\frac{90!}{10^{21}}</math>. The <math>n</math> we want is therefore the last two digits of <math>N</math>, or <math>N\pmod{100}</math>. Since there is clearly an excess of factors of 2, we know that <math>N\equiv 0\pmod 4</math>, so it remains to find <math>N\pmod{25}</math>. | ||
− | If we | + | If we divide <math>N</math> by <math>5^{21}</math> by taking out all the factors of <math>5</math> in <math>N</math>, we can write <math>N</math> as <math>\frac M{2^{21}}</math> where |
<cmath>M=1\cdot 2\cdot 3\cdot 4\cdot 1\cdot 6\cdot 7\cdot 8\cdot 9\cdot 2\cdots 89\cdot 18,</cmath> | <cmath>M=1\cdot 2\cdot 3\cdot 4\cdot 1\cdot 6\cdot 7\cdot 8\cdot 9\cdot 2\cdots 89\cdot 18,</cmath> | ||
where every factor of 5 is replaced by the number with all its factors of 5 removed. Specifically, every number in the form <math>5n</math> is replaced by <math>n</math>, and every number in the form <math>25n</math> is replaced by <math>n</math>. | where every factor of 5 is replaced by the number with all its factors of 5 removed. Specifically, every number in the form <math>5n</math> is replaced by <math>n</math>, and every number in the form <math>25n</math> is replaced by <math>n</math>. |
Revision as of 15:20, 12 February 2010
Problem
The number obtained from the last two nonzero digits of is equal to . What is ?
Solution
We will use the fact that for any integer ,
First, we find that the number of factors of in is equal to . Let . The we want is therefore the last two digits of , or . Since there is clearly an excess of factors of 2, we know that , so it remains to find .
If we divide by by taking out all the factors of in , we can write as where where every factor of 5 is replaced by the number with all its factors of 5 removed. Specifically, every number in the form is replaced by , and every number in the form is replaced by .
The number can be grouped as follows:
Using the identity at the beginning of the solution, we can reduce to
Using the fact that (or simply the fact that if you have your powers of 2 memorized), we can deduce that . Therefore .
Finally, combining with the fact that yields .