Difference between revisions of "2010 AMC 12A Problems/Problem 23"
(→Solution) |
(→Solution) |
||
Line 16: | Line 16: | ||
If we divide <math>N</math> by <math>5^{21}</math> by taking out all the factors of <math>5</math> in <math>N</math>, we can write <math>N</math> as <math>\frac M{2^{21}}</math> where | If we divide <math>N</math> by <math>5^{21}</math> by taking out all the factors of <math>5</math> in <math>N</math>, we can write <math>N</math> as <math>\frac M{2^{21}}</math> where | ||
<cmath>M=1\cdot 2\cdot 3\cdot 4\cdot 1\cdot 6\cdot 7\cdot 8\cdot 9\cdot 2\cdots 89\cdot 18,</cmath> | <cmath>M=1\cdot 2\cdot 3\cdot 4\cdot 1\cdot 6\cdot 7\cdot 8\cdot 9\cdot 2\cdots 89\cdot 18,</cmath> | ||
− | where every | + | where every multiple of 5 is replaced by the number with all its factors of 5 removed. Specifically, every number in the form <math>5n</math> is replaced by <math>n</math>, and every number in the form <math>25n</math> is replaced by <math>n</math>. |
The number <math>M</math> can be grouped as follows: | The number <math>M</math> can be grouped as follows: |
Revision as of 15:20, 12 February 2010
Problem
The number obtained from the last two nonzero digits of is equal to . What is ?
Solution
We will use the fact that for any integer ,
First, we find that the number of factors of in is equal to . Let . The we want is therefore the last two digits of , or . Since there is clearly an excess of factors of 2, we know that , so it remains to find .
If we divide by by taking out all the factors of in , we can write as where where every multiple of 5 is replaced by the number with all its factors of 5 removed. Specifically, every number in the form is replaced by , and every number in the form is replaced by .
The number can be grouped as follows:
Using the identity at the beginning of the solution, we can reduce to
Using the fact that (or simply the fact that if you have your powers of 2 memorized), we can deduce that . Therefore .
Finally, combining with the fact that yields .