Difference between revisions of "2010 AMC 12B Problems/Problem 13"
(→Solution) |
(→Solution) |
||
Line 6: | Line 6: | ||
== Solution == | == Solution == | ||
We note that <math>-1</math> <math>\le</math> <math>\sin x</math> <math>\le</math> <math>1</math> and <math>-1</math> <math>\le</math> <math>\cos x</math> <math>\le</math> <math>1</math>. | We note that <math>-1</math> <math>\le</math> <math>\sin x</math> <math>\le</math> <math>1</math> and <math>-1</math> <math>\le</math> <math>\cos x</math> <math>\le</math> <math>1</math>. | ||
− | Therefore, | + | Therefore, there is no other way to satisfy this equation other than making both <math>\cos(2A-B)=1</math> and <math>\sin(A+B)=1</math>, since any other way would cause one of them to become greater than 1, which contradicts our previous statement. |
From this we can easily conclude that <math>2A-B=0^{\circ}</math> and <math>A+B=90^{\circ}</math> and solving this system gives us <math>A=30^{\circ}</math> and <math>B=60^{\circ}</math>. It is clear that <math>\triangle ABC</math> is a <math>30^{\circ}-60^{\circ}-90^{\circ}</math> triangle with <math>BC=2</math> <math>\Longrightarrow</math> <math>(C)</math> | From this we can easily conclude that <math>2A-B=0^{\circ}</math> and <math>A+B=90^{\circ}</math> and solving this system gives us <math>A=30^{\circ}</math> and <math>B=60^{\circ}</math>. It is clear that <math>\triangle ABC</math> is a <math>30^{\circ}-60^{\circ}-90^{\circ}</math> triangle with <math>BC=2</math> <math>\Longrightarrow</math> <math>(C)</math> |
Revision as of 23:25, 6 April 2010
Problem
In , and . What is ?
Solution
We note that and . Therefore, there is no other way to satisfy this equation other than making both and , since any other way would cause one of them to become greater than 1, which contradicts our previous statement. From this we can easily conclude that and and solving this system gives us and . It is clear that is a triangle with