Difference between revisions of "1992 USAMO Problems/Problem 3"
m |
(→Solution) |
||
Line 3: | Line 3: | ||
== Solution == | == Solution == | ||
− | + | Let's a <math>n</math>-<math>p</math> set be a set <math>Z</math> such that <math>Z=\{a_1,a_2,\cdots,a_n\}</math>, where <math>\forall i<n</math>, <math>i\in \mathbb{Z}^+</math>, <math>a_i<a_{i+1}</math>, and for each <math>x\le p</math>, <math>x\in \mathbb{Z}^+</math>, <math>\exists Y\subseteq Z</math>, <math>\sigma(Y)=x</math>, <math>\nexists \sigma(Y)=p+1</math>. | |
+ | |||
+ | (For Example <math>\{1,2\}</math> is a <math>2</math>-<math>3</math> set and <math>\{1,2,4,10\}</math> is a <math>4</math>-<math>8</math> set) | ||
+ | |||
+ | <br/> | ||
+ | Futhermore, let call a <math>n</math>-<math>p</math> set a <math>n</math>-<math>p</math> good set if <math>a_n\le p</math>, and a <math>n</math>-<math>p</math> bad set if <math>a_n\ge p+1</math> (note that <math>\nexists \sigma(Y)=p+1</math> for any <math>n</math>-<math>p</math> set. Thus, we can ignore the case where <math>a_n=p+1</math>). | ||
+ | |||
+ | <br/> | ||
+ | Futhermore, if you add any amount of elements to the end of a <math>n</math>-<math>p</math> bad set to form another <math>n</math>-<math>p</math> set (with a different <math>n</math>), it will stay as a <math>n</math>-<math>p</math> bad set because <math>a_{n+x}>a_{n}>p+1</math> for any positive integer <math>x</math> and <math>\nexist \sigma(Y)=p+1</math>. | ||
+ | |||
+ | <br/> | ||
+ | <b>Lemma</b>) If <math>Z</math> is a <math>n</math>-<math>p</math> set, <math>p\le 2^n-1</math>. | ||
+ | |||
+ | <br/> | ||
+ | For <math>n=1</math>, <math>p=0</math> or <math>1</math> because <math>a_1=1 \rightarrow p=1</math> and <math>a_1\ne1\rightarrow p=0</math>. | ||
+ | |||
+ | Assume that the lemma is true for some <math>n</math>, then <math>2^n</math> is not expressible with the <math>n</math>-<math>p</math> set. Thus, when we add an element to the end to from a <math>n+1</math>-<math>r</math> set, <math>a_{n+1}</math> must be <math>\le p+1</math> if we want <math>r>p</math> because we need a way to express <math>p+1</math>. Since <math>p+1</math> is not expressible by the first <math>n</math> elements, <math>p+1+a_{n+1}</math> is not expressible by these <math>n+1</math> elements. Thus, the new set is a <math>n+1</math>-<math>r</math> set, where <math>r\le p+1+a_{n+1}\le2^{n+1}-1</math> | ||
+ | |||
+ | <b>Lemms Proven</b> | ||
+ | |||
+ | <br/> | ||
+ | The answer to this question is <math>\max{(a_{10})}=248</math>. | ||
+ | |||
+ | The following set is a <math>11</math>-<math>1500</math> set: | ||
+ | |||
+ | <math>\{1,2,4,8,16,32,64,128,247,248,750\}</math> | ||
+ | |||
+ | Note that the first 8 numbers are power of <math>2</math> from <math>0</math> to <math>7</math>, and realize that any <math>8</math> or less digit binary number is basically sum of a combination of the first <math>8</math> elements in the set. Thus, <math>\exist Y\subseteq\{1,2,4,8,16,32,64,128\}</math>, <math>\sigma(Y)=x \forall 1\le x\le255</math>. | ||
+ | |||
+ | <math>248\le\sigma(y)+a_9\le502</math> which implies that <math>\exist A\subseteq\{1,2,4,8,16,32,64,128,247\}</math>, <math>\sigma(A)=x \forall 1\le x\le502</math>. | ||
+ | |||
+ | Simlarly <math>\exist B\subseteq\{1,2,4,8,16,32,64,128,247,248\}</math>, <math>\sigma(A)=x \forall 1\le x\le750</math> and <math>\exist C\subseteq\{1,2,4,8,16,32,64,128,247,248,750\}</math>, <math>\sigma(A)=x \forall 1\le x\le1500</math>. | ||
+ | |||
+ | <br/>Thus, <math>\{1,2,4,8,16,32,64,128,247,248,750\}</math> is a <math>11</math>-<math>1500</math> set. | ||
+ | |||
+ | <br/> | ||
+ | <br/> | ||
+ | Now, let's assume for contradiction that <math>\exists a_{10}\le 247</math> such that <math>\left {a_i}\right|_{1\le i\le11}</math> is a <math>11</math>-<math>q</math> set where <math>q\ge1500</math> | ||
+ | |||
+ | <math>\left {a_i}\right|_{1\le i\le8}</math> is a <math>8</math>-<math>a</math> set where <math>a\le255</math> (lemma). | ||
+ | |||
+ | <math>max{(a_9)}=a_{10}-1\le246</math> | ||
+ | |||
+ | Let <math>\left {a_i}\right|_{1\le i\le10}</math> be a <math>10</math>-<math>b</math> set where the first <math>8</math> elements are the same as the previous set. Then, <math>256+a_9+a_{10}</math> is not expressible as <math>\sigma(Y)</math>. Thus, <math>b\le255+a_9+a_{10}\le748</math>. | ||
+ | |||
+ | In order to create a <math>11</math>-<math>d</math> set with <math>d>748</math> and the first <math>10</math> elements being the ones on the previous set, <math>a_{11}\le749</math> because we need to make <math>749</math> expressible as <math>\sigma(Y)</math>. Note that <math>b+1+a_{11}</math> is not expressible, thus <math>d<b+1+a_{11}\le1498</math>. | ||
+ | |||
+ | <br/> | ||
+ | Done but not elegant... | ||
== Resources == | == Resources == |
Revision as of 09:39, 22 April 2010
For a nonempty set of integers, let be the sum of the elements of . Suppose that is a set of positive integers with and that, for each positive integer , there is a subset of for which . What is the smallest possible value of ?
Solution
Let's a - set be a set such that , where , , , and for each , , , , .
(For Example is a - set and is a - set)
Futhermore, let call a - set a - good set if , and a - bad set if (note that for any - set. Thus, we can ignore the case where ).
Futhermore, if you add any amount of elements to the end of a - bad set to form another - set (with a different ), it will stay as a - bad set because for any positive integer and $\nexist \sigma(Y)=p+1$ (Error compiling LaTeX. Unknown error_msg).
Lemma) If is a - set, .
For , or because and .
Assume that the lemma is true for some , then is not expressible with the - set. Thus, when we add an element to the end to from a - set, must be if we want because we need a way to express . Since is not expressible by the first elements, is not expressible by these elements. Thus, the new set is a - set, where
Lemms Proven
The answer to this question is .
The following set is a - set:
Note that the first 8 numbers are power of from to , and realize that any or less digit binary number is basically sum of a combination of the first elements in the set. Thus, $\exist Y\subseteq\{1,2,4,8,16,32,64,128\}$ (Error compiling LaTeX. Unknown error_msg), .
which implies that $\exist A\subseteq\{1,2,4,8,16,32,64,128,247\}$ (Error compiling LaTeX. Unknown error_msg), .
Simlarly $\exist B\subseteq\{1,2,4,8,16,32,64,128,247,248\}$ (Error compiling LaTeX. Unknown error_msg), and $\exist C\subseteq\{1,2,4,8,16,32,64,128,247,248,750\}$ (Error compiling LaTeX. Unknown error_msg), .
Thus, is a - set.
Now, let's assume for contradiction that such that $\left {a_i}\right|_{1\le i\le11}$ (Error compiling LaTeX. Unknown error_msg) is a - set where
$\left {a_i}\right|_{1\le i\le8}$ (Error compiling LaTeX. Unknown error_msg) is a - set where (lemma).
Let $\left {a_i}\right|_{1\le i\le10}$ (Error compiling LaTeX. Unknown error_msg) be a - set where the first elements are the same as the previous set. Then, is not expressible as . Thus, .
In order to create a - set with and the first elements being the ones on the previous set, because we need to make expressible as . Note that is not expressible, thus .
Done but not elegant...
Resources
1992 USAMO (Problems • Resources) | ||
Preceded by Problem 2 |
Followed by Problem 4 | |
1 • 2 • 3 • 4 • 5 | ||
All USAMO Problems and Solutions |