Difference between revisions of "1989 USAMO Problems/Problem 4"
m (→Solution) |
|||
Line 20: | Line 20: | ||
{{USAMO box|year=1989|num-b=3|num-a=5}} | {{USAMO box|year=1989|num-b=3|num-a=5}} | ||
+ | {{MAA Notice}} |
Revision as of 19:46, 3 July 2013
Problem
Let be an acute-angled triangle whose side lengths satisfy the inequalities . If point is the center of the inscribed circle of triangle and point is the center of the circumscribed circle, prove that line intersects segments and .
Solution
Consider the lines that pass through the circumcenter . Extend , , to ,, on ,,, respectively.
We notice that passes through sides and if and only if belongs to either regions or .
Since , we let , , .
We have
Since divides angle into two equal parts, it must be in the region marked by the of angle , so is in .
Similarly, is in and . Thus, is in their intersection, . From above, we have passes through and .
See Also
1989 USAMO (Problems • Resources) | ||
Preceded by Problem 3 |
Followed by Problem 5 | |
1 • 2 • 3 • 4 • 5 | ||
All USAMO Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.