Difference between revisions of "Mobius function"

Line 2: Line 2:
 
<cmath>\mu(n) = \begin{cases} 0 & d^2 | n, \\ (-1)^k & n = p_1p_2\cdots{p_k} .\end{cases}</cmath>
 
<cmath>\mu(n) = \begin{cases} 0 & d^2 | n, \\ (-1)^k & n = p_1p_2\cdots{p_k} .\end{cases}</cmath>
 
In addition, <math>\mu(1) = 1</math>.
 
In addition, <math>\mu(1) = 1</math>.
 +
 +
The Mobius function is useful for a variety of reasons.
 +
 +
First, it conveniently encodes [[Principle of Inclusion-Exclusion]].
 +
For example, to count the number of positive integers less than or equal to <math>n</math> and relatively prime to <math>n</math>, we have
 +
\begin{align*}
 +
\phi(n) = &n
 +
              &- \frac{n}{p_1} - \frac{n}{p_2} - \cdots - \frac{n}{p_k}
 +
              &+ \frac{n}{p_1p_2} + \frac{n}{p_1p_3} + \cdots + \frac{n}{p_{k-1}p_k}
 +
              &\vdots
 +
              &+ (-1)^k \frac{n}{p_1p_2\cdots p_k},
 +
\end{align*}
 +
more succinctly expressed as
 +
<cmath>\phi(n) = \sum_{d|n} d \mu\left(\frac{n}{d}\right).</cmath>

Revision as of 18:32, 26 January 2011

The Mobius function is a multiplicative number theoretic function defined as follows: \[\mu(n) = \begin{cases} 0 & d^2 | n, \\ (-1)^k & n = p_1p_2\cdots{p_k} .\end{cases}\] In addition, $\mu(1) = 1$.

The Mobius function is useful for a variety of reasons.

First, it conveniently encodes Principle of Inclusion-Exclusion. For example, to count the number of positive integers less than or equal to $n$ and relatively prime to $n$, we have \begin{align*} \phi(n) = &n

              &- \frac{n}{p_1} - \frac{n}{p_2} - \cdots - \frac{n}{p_k}
              &+ \frac{n}{p_1p_2} + \frac{n}{p_1p_3} + \cdots + \frac{n}{p_{k-1}p_k}
              &\vdots
              &+ (-1)^k \frac{n}{p_1p_2\cdots p_k},

\end{align*} more succinctly expressed as \[\phi(n) = \sum_{d|n} d \mu\left(\frac{n}{d}\right).\]