Difference between revisions of "Mobius function"

Line 7: Line 7:
 
First, it conveniently encodes [[Principle of Inclusion-Exclusion]].
 
First, it conveniently encodes [[Principle of Inclusion-Exclusion]].
 
For example, to count the number of positive integers less than or equal to <math>n</math> and relatively prime to <math>n</math>, we have
 
For example, to count the number of positive integers less than or equal to <math>n</math> and relatively prime to <math>n</math>, we have
\begin{align*}
+
{| class="wikitable" style="margin: 1em auto 1em auto"
\phi(n) = &n
+
| <math>\phi(n)</math> || <math> =n</math>
              &- \frac{n}{p_1} - \frac{n}{p_2} - \cdots - \frac{n}{p_k}
+
|-
              &+ \frac{n}{p_1p_2} + \frac{n}{p_1p_3} + \cdots + \frac{n}{p_{k-1}p_k}
+
| || <math>- \frac{n}{p_1} - \frac{n}{p_2} - \cdots - \frac{n}{p_k}</math>
              &\vdots
+
|-
              &+ (-1)^k \frac{n}{p_1p_2\cdots p_k},
+
| || <math>+ \frac{n}{p_1p_2} + \frac{n}{p_1p_3} + \cdots + \frac{n}{p_{k-1}p_k}</math>
\end{align*}
+
|-
 +
| || <math>\vdots</math>
 +
|-
 +
| || <math>+ (-1)^k \frac{n}{p_1 p_2 \cdots p_k},</math>
 +
|}
 +
 
 
more succinctly expressed as
 
more succinctly expressed as
 
<cmath>\phi(n) = \sum_{d|n} \mu(d) \frac{n}{d}.</cmath>
 
<cmath>\phi(n) = \sum_{d|n} \mu(d) \frac{n}{d}.</cmath>
 +
 +
One unique fact about the Mobius function, which leads to the Mobius inversion formula, is that
 +
<cmath>\sum_{d|n} mu(d) = \begin{cases} 1 & n = 1, \\ (0 & otherwise. \end{cases}</cmath>

Revision as of 18:41, 26 January 2011

The Mobius function is a multiplicative number theoretic function defined as follows: \[\mu(n) = \begin{cases} 0 & d^2 | n, \\ (-1)^k & n = p_1p_2\cdots{p_k} .\end{cases}\] In addition, $\mu(1) = 1$.

The Mobius function is useful for a variety of reasons.

First, it conveniently encodes Principle of Inclusion-Exclusion. For example, to count the number of positive integers less than or equal to $n$ and relatively prime to $n$, we have

$\phi(n)$ $=n$
$- \frac{n}{p_1} - \frac{n}{p_2} - \cdots - \frac{n}{p_k}$
$+ \frac{n}{p_1p_2} + \frac{n}{p_1p_3} + \cdots + \frac{n}{p_{k-1}p_k}$
$\vdots$
$+ (-1)^k \frac{n}{p_1 p_2 \cdots p_k},$

more succinctly expressed as \[\phi(n) = \sum_{d|n} \mu(d) \frac{n}{d}.\]

One unique fact about the Mobius function, which leads to the Mobius inversion formula, is that \[\sum_{d|n} mu(d) = \begin{cases} 1 & n = 1, \\ (0 & otherwise. \end{cases}\]