Difference between revisions of "2011 AMC 10B Problems/Problem 23"
CakeIsEaten (talk | contribs) (→Solution) |
|||
Line 3: | Line 3: | ||
What is the hundreds digit of <math>2011^{2011}</math>? | What is the hundreds digit of <math>2011^{2011}</math>? | ||
− | <math>\textbf{(A)}\ 1 \qquad \textbf{(B)}\ 3 \qquad \textbf{(C)}\ | + | <math>\textbf{(A)}\ 1 \qquad \textbf{(B)}\ 3 \qquad \textbf{(C)}\ 5 \qquad \textbf{(D)}\ 6 \qquad \textbf{(E)}\ 9</math> |
==Solution== | ==Solution== | ||
+ | Since <math>2011 \equiv 11 (\text{mod }1000),</math> we know <math>2011^{2011} \equiv 11^{2011} (\text{mod }1000).</math> | ||
− | + | To compute this, write it as <math>(1+10)^{2011}</math> and use the [[binomial theorem]]. | |
+ | <cmath>1^{2011} + 2011 \cdot 1^{2010}10^1 + \frac{2011 \cdot 2010}{2} 1^{2009}10^{2} + \cdots</cmath> | ||
+ | From then on the power of <math>10</math> is greater than <math>3</math> and cancel out with <math>\text{mod }1000.</math> | ||
+ | <cmath>\begin{align*} | ||
+ | 11^{2011} &\equiv 1 + 20110 + 100\frac{11 \cdot 10}{2}\\ | ||
+ | &= 1 + 20110 + 5500\\ | ||
+ | &\equiv 1 + 110 + 500\\ | ||
+ | &=611 | ||
+ | \end{align*}</cmath> | ||
− | + | Therefore, the hundreds digit is <math>\boxed{\textbf{(D) } 6}</math> | |
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− |
Revision as of 14:18, 4 June 2011
Problem
What is the hundreds digit of ?
Solution
Since we know
To compute this, write it as and use the binomial theorem.
From then on the power of is greater than and cancel out with
Therefore, the hundreds digit is