Difference between revisions of "2001 AMC 10 Problems/Problem 22"

(Created page with '==Problem== In the magic square shown, the sums of the numbers in each row, column, and diagonal are the same. Five of these numbers are represented by <math> v </math>, <math> …')
 
(Solution)
Line 24: Line 24:
  
 
==Solution==
 
==Solution==
 +
 +
We know that <math> y+z=2v </math>, so we could find one variable rather than two.
  
 
<math> v+24+w=43+v </math>
 
<math> v+24+w=43+v </math>
Line 72: Line 74:
 
The sum per row is <math> 25+21+20=66 </math>.
 
The sum per row is <math> 25+21+20=66 </math>.
  
Thus <math> x=66-24-20=22 </math> so <math> 18+22+y=66 </math>, <math> y=24 </math>.
+
Thus <math> 66-18-25=66-43=v=23 </math>.  
 +
  
Therefore, <math> 20+24 = \boxed{\textbf{(B)}\ 44} </math>.
+
Since we needed <math> 2v </math> and we know <math> v=23 </math>, <math> 23 \times 2 = \boxed{\textbf{(D)}\ 46} </math>.

Revision as of 19:47, 16 March 2011

Problem

In the magic square shown, the sums of the numbers in each row, column, and diagonal are the same. Five of these numbers are represented by $v$, $w$, $x$, $y$, and $z$. Find $y + z$.

$\textbf{(A)}\ 43 \qquad \textbf{(B)}\ 44 \qquad \textbf{(C)}\ 45 \qquad \textbf{(D)}\ 46 \qquad \textbf{(E)}\ 47$

[asy] unitsize(10mm); defaultpen(linewidth(1pt)); for(int i=0; i<=3; ++i) { draw((0,i)--(3,i)); draw((i,0)--(i,3)); } label("$25$",(0.5,0.5)); label("$z$",(1.5,0.5)); label("$21$",(2.5,0.5)); label("$18$",(0.5,1.5)); label("$x$",(1.5,1.5)); label("$y$",(2.5,1.5)); label("$v$",(0.5,2.5)); label("$24$",(1.5,2.5)); label("$w$",(2.5,2.5));[/asy]

Solution

We know that $y+z=2v$, so we could find one variable rather than two.

$v+24+w=43+v$

$24+w=43$

$w=19$

[asy] unitsize(10mm); defaultpen(linewidth(1pt)); for(int i=0; i<=3; ++i) { draw((0,i)--(3,i)); draw((i,0)--(i,3)); } label("$25$",(0.5,0.5)); label("$z$",(1.5,0.5)); label("$21$",(2.5,0.5)); label("$18$",(0.5,1.5)); label("$x$",(1.5,1.5)); label("$y$",(2.5,1.5)); label("$v$",(0.5,2.5)); label("$24$",(1.5,2.5)); label("$19$",(2.5,2.5));[/asy]

$44+x=24+x+z$ $z=20$

[asy] unitsize(10mm); defaultpen(linewidth(1pt)); for(int i=0; i<=3; ++i) { draw((0,i)--(3,i)); draw((i,0)--(i,3)); } label("$25$",(0.5,0.5)); label("$20$",(1.5,0.5)); label("$21$",(2.5,0.5)); label("$18$",(0.5,1.5)); label("$x$",(1.5,1.5)); label("$y$",(2.5,1.5)); label("$v$",(0.5,2.5)); label("$24$",(1.5,2.5)); label("$19$",(2.5,2.5));[/asy]

The sum per row is $25+21+20=66$.

Thus $66-18-25=66-43=v=23$.


Since we needed $2v$ and we know $v=23$, $23 \times 2 = \boxed{\textbf{(D)}\ 46}$.