Difference between revisions of "2011 AIME I Problems/Problem 11"
AlphaMath1 (talk | contribs) (Created page with '== Problem == Let <math>R</math> be the set of all possible remainders when a number of the form <math>2^n</math>, <math>n</math> a nonnegative integer, is divided by <math>1000<…') |
AlphaMath1 (talk | contribs) (→Problem) |
||
Line 1: | Line 1: | ||
== Problem == | == Problem == | ||
Let <math>R</math> be the set of all possible remainders when a number of the form <math>2^n</math>, <math>n</math> a nonnegative integer, is divided by <math>1000</math>. Let <math>S</math> be the sum of the elements in <math>R</math>. Find the remainder when <math>S</math> is divided by <math>1000</math>. | Let <math>R</math> be the set of all possible remainders when a number of the form <math>2^n</math>, <math>n</math> a nonnegative integer, is divided by <math>1000</math>. Let <math>S</math> be the sum of the elements in <math>R</math>. Find the remainder when <math>S</math> is divided by <math>1000</math>. | ||
+ | |||
+ | == Solution 1== | ||
+ | Note that the cycle of remainders of <math>2^n</math> will start after <math>2^2</math> because remainders of <math>1, 2, 4</math> will not be possible after (the numbers following will always be congruent to 0 modulo 8). Now we have to find the order. Note that <math>2^{100}\equiv 1\mod 125</math>. The order is <math>100</math> starting with remainder <math>8</math>. All that is left is find <math>S</math> in mod <math>1000</math> after some computation. | ||
+ | <math></math>S=2^0+2^1+2^2+2^3+2^4...+2^102\equiv 2^103-1\equiv 8-1\equiv \boxed{007}\mod 1000$. |
Revision as of 12:05, 19 March 2011
Problem
Let be the set of all possible remainders when a number of the form , a nonnegative integer, is divided by . Let be the sum of the elements in . Find the remainder when is divided by .
Solution 1
Note that the cycle of remainders of will start after because remainders of will not be possible after (the numbers following will always be congruent to 0 modulo 8). Now we have to find the order. Note that . The order is starting with remainder . All that is left is find in mod after some computation. $$ (Error compiling LaTeX. Unknown error_msg)S=2^0+2^1+2^2+2^3+2^4...+2^102\equiv 2^103-1\equiv 8-1\equiv \boxed{007}\mod 1000$.