Difference between revisions of "User talk:ComplexZeta"
ComplexZeta (talk | contribs) |
ComplexZeta (talk | contribs) |
||
Line 1: | Line 1: | ||
− | Hi! I'm Simon Rubinstein-Salzedo. I've just finished my third year as a mathematics major at the [[College of Creative Studies]] at [[University of California, Santa Barbara]]. CCS is the best place in the country for a serious and motivated student to study mathematics (or seven other disciplines), and that's why I go there. My greatest claim to fame seems to be [[Simon's | + | Hi! I'm Simon Rubinstein-Salzedo. I've just finished my third year as a mathematics major at the [[College of Creative Studies]] at [[University of California, Santa Barbara]]. CCS is the best place in the country for a serious and motivated student to study mathematics (or seven other disciplines), and that's why I go there. My greatest claim to fame seems to be [[Simon's Favorite Factoring Trick]], which was named after me. But eventually I'll prove the [[Riemann hypothesis]] and the [[Birch and Swinnerson-Dyer conjecture]], and then I will have greater claims to fame. In fact, let <math>p</math> be a prime congruent to <math>1\pmod 3</math>, and consider a [[Dirichlet character|character]] <math>\chi</math> of <math>\mathbb{Q}(\zeta_p)</math>. Then its associated ''L''-function <math>L(s,\chi)</math> satisfies... |
Revision as of 21:57, 21 June 2006
Hi! I'm Simon Rubinstein-Salzedo. I've just finished my third year as a mathematics major at the College of Creative Studies at University of California, Santa Barbara. CCS is the best place in the country for a serious and motivated student to study mathematics (or seven other disciplines), and that's why I go there. My greatest claim to fame seems to be Simon's Favorite Factoring Trick, which was named after me. But eventually I'll prove the Riemann hypothesis and the Birch and Swinnerson-Dyer conjecture, and then I will have greater claims to fame. In fact, let be a prime congruent to , and consider a character of . Then its associated L-function satisfies...