Difference between revisions of "1998 USAMO Problems/Problem 3"
m (moved 1998 USAMO Problems/Problem 1 to 1998 USAMO Problems/Problem 3: Wrong problem, I fix'd it) |
|||
Line 1: | Line 1: | ||
− | + | == Problem == | |
− | |||
− | |||
− | |||
Let <math>a_0,\cdots a_n</math> be real numbers in the interval <math>(0,\frac {\pi}{2})</math> such that | Let <math>a_0,\cdots a_n</math> be real numbers in the interval <math>(0,\frac {\pi}{2})</math> such that | ||
− | < | + | <cmath>\tan{(a_0 - \frac {\pi}{4})} + \tan{(a_1 - \frac {\pi}{4})} + \cdots + \tan{(a_n - \frac {\pi}{4})}\ge n - 1</cmath> |
Prove that <math>\tan{(a_0)}\tan{(a_1)}\cdots \tan{(a_n)}\ge n^{n + 1}</math>. | Prove that <math>\tan{(a_0)}\tan{(a_1)}\cdots \tan{(a_n)}\ge n^{n + 1}</math>. | ||
− | Solution | + | == Solution == |
− | |||
Let <math>y_i = \tan{(a_i - \frac {\pi}{4})}</math>, where <math>0\le i\le n</math>. Then we have | Let <math>y_i = \tan{(a_i - \frac {\pi}{4})}</math>, where <math>0\le i\le n</math>. Then we have | ||
Revision as of 10:54, 16 April 2011
Problem
Let be real numbers in the interval such that Prove that .
Solution
Let , where . Then we have
By AM-GM,
- $\prod_{i = 0}^n{\frac {1 + y_i}{n}}\ge \prod_{i = 0}^n{\prod_{j\neq i}{(1 - y_j)^{\frac {1}{n}}}$ (Error compiling LaTeX. Unknown error_msg)
Note that by the addition formula for tangents, .
So , as desired.