Difference between revisions of "2002 AMC 8 Problems/Problem 1"
(Created page with "==Problem== A circle and two distinct lines are drawn on a sheet of paper. What is the largest possible number of points of intersection of these figures? <math>\t...") |
Talkinaway (talk | contribs) m (See Also box) |
||
Line 8: | Line 8: | ||
The two [[Line|lines]] can both [[intersection|intersect]] the [[circle]] twice, and can intersect each other once, so <math>2+2+1= \boxed {\text {(D)}\ 5}.</math> | The two [[Line|lines]] can both [[intersection|intersect]] the [[circle]] twice, and can intersect each other once, so <math>2+2+1= \boxed {\text {(D)}\ 5}.</math> | ||
+ | |||
+ | ==See Also== | ||
+ | {{AMC8 box|year=2002|before=First<br />Question|num-a=2}} |
Revision as of 23:56, 30 July 2011
Problem
A circle and two distinct lines are drawn on a sheet of paper. What is the largest possible number of points of intersection of these figures?
Solution
The two lines can both intersect the circle twice, and can intersect each other once, so
See Also
2002 AMC 8 (Problems • Answer Key • Resources) | ||
Preceded by First Question |
Followed by Problem 2 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AJHSME/AMC 8 Problems and Solutions |