Difference between revisions of "2002 AMC 10B Problems/Problem 14"

(Solution)
Line 7: Line 7:
 
== Solution ==
 
== Solution ==
  
Taking the squareroot, <math>N=5^{64}\cdot 8^{25}=5^{64}\cdot 2^{75}=10^{64}\cdot 2^{11}</math>. This is <math>2048</math> with 64 <math>0</math>'s on the end. So, the sum of the digits of <math>N</math> is <math>14\Longrightarrow\mathrm{ (B) \ }</math>
+
Since, <math>N=5^{64}\cdot 8^{25}=5^{64}\cdot (2^{3})^{25}=5^{64}\cdot 2^{75}</math>.
 +
 
 +
Combing the <math>2</math>'s and <math>5</math>'s gives us, <math>(2\cdot 5)^{64}\cdot 2^{(75-64)}=(2\cdot 5)^{64}\cdot 2^{11}=10^{64}\cdot 2^{11}</math>.  
 +
 
 +
This is <math>2048</math> with sixty-four, <math>0</math>'s on the end. So, the sum of the digits of <math>N</math> is <math>2+4+8=14\Longrightarrow\mathrm{ (B) \ }</math>

Revision as of 14:33, 28 December 2011

Problem

The number $25^{64}\cdot 64^{25}$ is the square of a positive integer $N$. In decimal representation, the sum of the digits of $N$ is

$\mathrm{(A) \ } 7\qquad \mathrm{(B) \ } 14\qquad \mathrm{(C) \ } 21\qquad \mathrm{(D) \ } 28\qquad \mathrm{(E) \ } 35$

Solution

Since, $N=5^{64}\cdot 8^{25}=5^{64}\cdot (2^{3})^{25}=5^{64}\cdot 2^{75}$.

Combing the $2$'s and $5$'s gives us, $(2\cdot 5)^{64}\cdot 2^{(75-64)}=(2\cdot 5)^{64}\cdot 2^{11}=10^{64}\cdot 2^{11}$.

This is $2048$ with sixty-four, $0$'s on the end. So, the sum of the digits of $N$ is $2+4+8=14\Longrightarrow\mathrm{ (B) \ }$