Difference between revisions of "1991 AHSME Problems/Problem 26"

(Created page with "An <math>n</math>-digit positive integer is cute if its <math>n</math> digits are an arrangement of the set <math>\{1,2,...,n\}</math> and its first <math>k</math> digits form a...")
 
Line 1: Line 1:
 
An <math>n</math>-digit positive integer is cute if its <math>n</math> digits are an arrangement of the set <math>\{1,2,...,n\}</math> and its first  
 
An <math>n</math>-digit positive integer is cute if its <math>n</math> digits are an arrangement of the set <math>\{1,2,...,n\}</math> and its first  
 
<math>k</math> digits form an integer that is divisible by <math>k</math>  , for  <math>k  = 1,2,...,n</math>. For example, <math>321</math> is a cute <math>3</math>-digit integer because <math>1</math> divides <math>3</math>, <math>2</math> divides <math>32</math>, and <math>3</math> divides <math>321</math>. Howmany cute <math>6</math>-digit integers are there?
 
<math>k</math> digits form an integer that is divisible by <math>k</math>  , for  <math>k  = 1,2,...,n</math>. For example, <math>321</math> is a cute <math>3</math>-digit integer because <math>1</math> divides <math>3</math>, <math>2</math> divides <math>32</math>, and <math>3</math> divides <math>321</math>. Howmany cute <math>6</math>-digit integers are there?
 +
{{MAA Notice}}

Revision as of 12:54, 5 July 2013

An $n$-digit positive integer is cute if its $n$ digits are an arrangement of the set $\{1,2,...,n\}$ and its first $k$ digits form an integer that is divisible by $k$ , for $k  = 1,2,...,n$. For example, $321$ is a cute $3$-digit integer because $1$ divides $3$, $2$ divides $32$, and $3$ divides $321$. Howmany cute $6$-digit integers are there? The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png