Difference between revisions of "1989 AHSME Problems/Problem 14"

(Created page with "<math>\cot 10+\tan 5=</math> <math> \mathrm{(A) \csc 5 } \qquad \mathrm{(B) \csc 10 } \qquad \mathrm{(C) \sec 5 } \qquad \mathrm{(D) \sec 10 } \qquad \mathrm{(E) \sin 15 } </m...")
 
Line 3: Line 3:
  
 
<math> \mathrm{(A) \csc 5 } \qquad \mathrm{(B) \csc 10 } \qquad \mathrm{(C) \sec 5 } \qquad \mathrm{(D) \sec 10 } \qquad \mathrm{(E) \sin 15 }  </math>
 
<math> \mathrm{(A) \csc 5 } \qquad \mathrm{(B) \csc 10 } \qquad \mathrm{(C) \sec 5 } \qquad \mathrm{(D) \sec 10 } \qquad \mathrm{(E) \sin 15 }  </math>
 +
 +
We have  <cmath>\cot 10 +\tan 5=\frac{\cos 10}{\sin 10}+\frac{\sin 5}{\cos 5}=\frac{\cos10\cos5+\sin10\sin5}{\sin10\cos 5}=\frac{\cos(10-5)}{\sin10\cos5}=\frac{\cos5}{\sin10\cos5}=\csc10</cmath>

Revision as of 21:28, 29 February 2012

$\cot 10+\tan 5=$


$\mathrm{(A) \csc 5 } \qquad \mathrm{(B) \csc 10 } \qquad \mathrm{(C) \sec 5 } \qquad \mathrm{(D) \sec 10 } \qquad \mathrm{(E) \sin 15 }$

We have \[\cot 10 +\tan 5=\frac{\cos 10}{\sin 10}+\frac{\sin 5}{\cos 5}=\frac{\cos10\cos5+\sin10\sin5}{\sin10\cos 5}=\frac{\cos(10-5)}{\sin10\cos5}=\frac{\cos5}{\sin10\cos5}=\csc10\]