Difference between revisions of "Mock AIME 1 2006-2007 Problems/Problem 10"

Line 7: Line 7:
 
----
 
----
  
*[[Mock AIME 1 2006-2007/Problem 9 | Previous Problem]]
+
*[[Mock AIME 1 2006-2007 Problems/Problem 9 | Previous Problem]]
  
*[[Mock AIME 1 2006-2007/Problem 11 | Next Problem]]
+
*[[Mock AIME 1 2006-2007 Problems/Problem 11 | Next Problem]]
  
 
*[[Mock AIME 1 2006-2007]]
 
*[[Mock AIME 1 2006-2007]]

Revision as of 14:51, 3 April 2012

Problem

In $\triangle ABC$, $AB$, $BC$, and $CA$ have lengths $3$, $4$, and $5$, respectively. Let the incircle, circle $I$, of $\triangle ABC$ touch $AB$, $BC$, and $CA$ at $C'$, $A'$, and $B'$, respectively. Construct three circles, $A''$, $B''$, and $C''$, externally tangent to the other two and circles $A''$, $B''$, and $C''$ are internally tangent to the circle $I$ at $A'$, $B'$, and $C'$, respectively. Let circles $A''$, $B''$, $C''$, and $I$ have radii $a$, $b$, $c$, and $r$, respectively. If $\frac{r}{a}+\frac{r}{b}+\frac{r}{c}=\frac{m}{n}$ where $m$ and $n$ are positive integers, find $m+n$.

Solution

This problem needs a solution. If you have a solution for it, please help us out by adding it.