Difference between revisions of "2006 Romanian NMO Problems/Grade 10/Problem 1"

(added problem)
 
m (Problem)
Line 1: Line 1:
 
==Problem==
 
==Problem==
 +
Let <math>M</math> be a set composed of <math>n</math> elements and let <math>\mathcal P (M)</math> be its power set. Find all functions <math>f : \mathcal P (M) \to \{ 0,1,2,\ldots,n \}</math> that have the properties
 +
 +
(a) <math>f(A) \neq 0</math>, for <math>A \neq \phi</math>;
 +
 +
(b) <math>f \left( A \cup B \right) = f \left( A \cap B \right) + f \left( A \Delta B \right)</math>, for all <math>A,B \in \mathcal P (M)</math>, where <math>A \Delta B = \left( A \cup B \right) \backslash \left( A \cap B \right)</math>.
 +
 
==Solution==
 
==Solution==
 
{{solution}}
 
{{solution}}

Revision as of 14:03, 7 May 2012

Problem

Let $M$ be a set composed of $n$ elements and let $\mathcal P (M)$ be its power set. Find all functions $f : \mathcal P (M) \to \{ 0,1,2,\ldots,n \}$ that have the properties

(a) $f(A) \neq 0$, for $A \neq \phi$;

(b) $f \left( A \cup B \right) = f \left( A \cap B \right) + f \left( A \Delta B \right)$, for all $A,B \in \mathcal P (M)$, where $A \Delta B = \left( A \cup B \right) \backslash \left( A \cap B \right)$.

Solution

This problem needs a solution. If you have a solution for it, please help us out by adding it.

See also