Difference between revisions of "1995 AJHSME Problems/Problem 15"

(Problem)
(Problem)
Line 9: Line 9:
 
<math>\frac{4}{37}=\frac{12}{111}=\frac{108}{999}=0.108108108...</math>
 
<math>\frac{4}{37}=\frac{12}{111}=\frac{108}{999}=0.108108108...</math>
  
Since this repeats every three digits, digit number x = digit number (x mod 3), and the 100th digit = (100 mod 3)th digit = 1st digit = 1 \text{(B)}
+
Since this repeats every three digits, digit number x = digit number (x mod 3), and the 100th digit = (100 mod 3)th digit = 1st digit = 1 <math>\text{(B)}</math>

Revision as of 12:55, 5 July 2012

Problem

What is the $100^\text{th}$ digit to the right of the decimal point in the decimal form of $4/37$?

$\text{(A)}\ 0 \qquad \text{(B)}\ 1 \qquad \text{(C)}\ 2 \qquad \text{(D)}\ 7 \qquad \text{(E)}\ 8$

Solution

$\frac{4}{37}=\frac{12}{111}=\frac{108}{999}=0.108108108...$

Since this repeats every three digits, digit number x = digit number (x mod 3), and the 100th digit = (100 mod 3)th digit = 1st digit = 1 $\text{(B)}$