Difference between revisions of "1961 AHSME Problems/Problem 33"

(Created page with "==Problem 33== The number of solutions of <math>2^{2x}-3^{2y}=55</math>, in which <math>x</math> and <math>y</math> are integers, is: <math> \textbf{(A)}\ 0 \qquad\textbf{(B)}\...")
 
(Problem 33)
Line 4: Line 4:
  
 
<math> \textbf{(A)}\ 0 \qquad\textbf{(B)}\ 1\qquad\textbf{(C)}\ 2\qquad\textbf{(D)}\ 3}\qquad\textbf{(E)}\ \text{More than three, but finite} } </math>
 
<math> \textbf{(A)}\ 0 \qquad\textbf{(B)}\ 1\qquad\textbf{(C)}\ 2\qquad\textbf{(D)}\ 3}\qquad\textbf{(E)}\ \text{More than three, but finite} } </math>
 +
{{MAA Notice}}

Revision as of 11:36, 5 July 2013

Problem 33

The number of solutions of $2^{2x}-3^{2y}=55$, in which $x$ and $y$ are integers, is:

$\textbf{(A)}\ 0 \qquad\textbf{(B)}\ 1\qquad\textbf{(C)}\ 2\qquad\textbf{(D)}\ 3}\qquad\textbf{(E)}\ \text{More than three, but finite} }$ (Error compiling LaTeX. Unknown error_msg) The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png