Difference between revisions of "2012 AMC 8 Problems"
Bharatputra (talk | contribs) |
Bharatputra (talk | contribs) |
||
Line 129: | Line 129: | ||
<math> \textbf{(A)}\hspace{.05in}3127\qquad\textbf{(B)}\hspace{.05in}3133\qquad\textbf{(C)}\hspace{.05in}3137\qquad\textbf{(D)}\hspace{.05in}3139\qquad\textbf{(E)}\hspace{.05in}3149 </math> | <math> \textbf{(A)}\hspace{.05in}3127\qquad\textbf{(B)}\hspace{.05in}3133\qquad\textbf{(C)}\hspace{.05in}3137\qquad\textbf{(D)}\hspace{.05in}3139\qquad\textbf{(E)}\hspace{.05in}3149 </math> | ||
+ | |||
+ | ==Problem 19== | ||
+ | In a jar of red, green, and blue marbles, all but 6 are red marbles, all but 8 are green, and all but 4 are blue. How many marbles are in the jar? | ||
+ | |||
+ | <math> \textbf{(A)}\hspace{.05in}6\qquad\textbf{(B)}\hspace{.05in}8\qquad\textbf{(C)}\hspace{.05in}9\qquad\textbf{(D)}\hspace{.05in}10\qquad\textbf{(E)}\hspace{.05in}12 </math> |
Revision as of 09:01, 24 November 2012
Contents
Problem 1
Rachelle uses pounds of meat to make hamburgers for her family. How many pounds of meat does she need to make hamburgers for a neighborhood picnic?
Problem 2
In the country of East Westmore, statisticians estimate there is a baby born every hours and a death every day. To the nearest hundred, how many people are added to the population of East Westmore each year?
Problem 3
On February 13 listed the length of daylight as 10 hours and 24 minutes, the sunrise was , and the sunset as . The length of daylight and sunrise were correct, but the sunset was wrong. When did the sun really set?
Problem 4
Peter's family ordered a 12-slice pizza for dinner. Peter ate one slice and shared another slice equally with his brother Paul. What fraction of the pizza did Peter eat?
Problem 5
In the diagram, all angles are right angles and the lengths of the sides are given in centimeters. Note the diagram is not drawn to scale. What is , in centimeters?
Problem 6
A rectangular photograph is placed in a frame that forms a border two inches wide on all sides of the photograph. The photograph measures 8 inches high and 10 inches wide. What is the area of the border, in square inches?
Problem 7
Isabella must take four 100-point tests in her math class. Her goal is to achieve an average grade of 95 on the tests. Her first two test scores were 97 and 91. After seeing her score on the third test, she realized she can still reach her goal. What is the lowest possible score she could have made on the third test?
Problem 8
A shop advertises everything is "half price in today's sale." In addition, a coupon gives a 20% discount on sale prices. Using the coupon, the price today represents what percentage off the original price?
Problem 9
The Fort Worth Zoo has a number of two-legged birds and a number of four-legged mammals. On one visit to the zoo, Margie counted 200 heads and 522 legs. How many of the animals that Margie counted were two-legged birds?
Problem 10
How many 4-digit numbers greater than 1000 are there that use the four digits of 2012?
Problem 11
The mean, median, and unique mode of the positive integers 3, 4, 5, 6, 6, 7, are all equal. What is the value of ?
Problem 12
What is the units digit of ?
Problem 13
Jamar bought some pencils costing more than a penny each at the school bookstore and paid . Sharona bought some of the same pencils and paid . How many more pencils did Sharona buy than Jamar?
Problem 14
In the BIG N, a middle school football conference, each team plays every other team exactly once. If a total of 21 conference games were played during the 2012 season, how many teams were members of the BIG N conference?
Problem 15
The smallest number greater than 2 that leaves a remainder of 2 when divided by 3, 4, 5, or 6 lies between what numbers?
Problem 16
Each of the digits 0, 1, 2, 3, 4, 5, 6, 7, 8, and 9 is used only once to make two five-digit numbers so that they have the largest possible sum. Which of the following could be one of the numbers?
Problem 17
A square with integer side length is cut into 10 squares, all of which have integer side length and at least 8 of which have area 1. What is the smallest possible value of the length of the side of the original square?
Problem 18
What is the smallest positive integer that is neither prime nor square and that has no prime factor less than 50?
Problem 19
In a jar of red, green, and blue marbles, all but 6 are red marbles, all but 8 are green, and all but 4 are blue. How many marbles are in the jar?