Difference between revisions of "2003 AMC 12A Problems/Problem 17"
m |
(Added another solution.) |
||
Line 50: | Line 50: | ||
Note that <math>P</math> is merely a reflection of <math>D</math> over <math>AM</math>. Call the intersection of <math>AM</math> and <math>DP</math> <math>X</math>. Drop perpendiculars from <math>X</math> and <math>P</math> to <math>AD</math>, and denote their respective points of intersection by <math>J</math> and <math>K</math>. We then have <math>\triangle DXJ\sim\triangle DPK</math>, with a scale factor of 2. Thus, we can find <math>XJ</math> and double it to get our answer. With some analytical geometry, we find that <math>XJ=\frac{8}{5}</math>, implying that <math>PK=\frac{16}{5}</math>. | Note that <math>P</math> is merely a reflection of <math>D</math> over <math>AM</math>. Call the intersection of <math>AM</math> and <math>DP</math> <math>X</math>. Drop perpendiculars from <math>X</math> and <math>P</math> to <math>AD</math>, and denote their respective points of intersection by <math>J</math> and <math>K</math>. We then have <math>\triangle DXJ\sim\triangle DPK</math>, with a scale factor of 2. Thus, we can find <math>XJ</math> and double it to get our answer. With some analytical geometry, we find that <math>XJ=\frac{8}{5}</math>, implying that <math>PK=\frac{16}{5}</math>. | ||
+ | |||
+ | ==Solution 3== | ||
+ | As in Solution 2, draw in <math>DP</math> and <math>AM</math> and denote their intersection point <math>X</math>. Next, drop a perpendicular from <math>P</math> to <math>AD</math> and denote the foot as <math>Z</math>. <math>AP \cong AD</math> as they are both radii and similarly <math>DM \cong MP</math> so <math>APMD</math> is a kite and <math>DX \perp XM</math> by a well-known theorem. | ||
+ | |||
+ | Pythagorean theorem gives us <math>AM=2 \sqrt{5}</math>. Clearly <math>\triangle XMD \sim \triangle XDA \sim \triangle DMA \sim \triangle ZDP</math> by angle-angle and <math>\triangle XMD \cong \triangle XMP</math> by Hypotenuse Leg. | ||
+ | Manipulating similar triangles gives us <math>PZ=\frac{16}{5}</math> | ||
== See Also == | == See Also == |
Revision as of 22:50, 6 December 2012
Contents
[hide]Problem
Square has sides of length
, and
is the midpoint of
. A circle with radius
and center
intersects a circle with radius
and center
at points
and
. What is the distance from
to
?
Solution 1
Let be the origin.
is the point
and
is the point
. We are given the radius of the quarter circle and semicircle as
and
, respectively, so their equations, respectively, are:
Algebraically manipulating the second equation gives:
Substituting this back into the first equation:
Solving each factor for 0 yields . The first value of
is obviously referring to the x-coordinate of the point where the circles intersect at the origin,
, so the second value must be referring to the x coordinate of
. Since
is the y-axis, the distance to it from
is the same as the x-value of the coordinate of
, so the distance from
to
is
Solution 2
Note that is merely a reflection of
over
. Call the intersection of
and
. Drop perpendiculars from
and
to
, and denote their respective points of intersection by
and
. We then have
, with a scale factor of 2. Thus, we can find
and double it to get our answer. With some analytical geometry, we find that
, implying that
.
Solution 3
As in Solution 2, draw in and
and denote their intersection point
. Next, drop a perpendicular from
to
and denote the foot as
.
as they are both radii and similarly
so
is a kite and
by a well-known theorem.
Pythagorean theorem gives us . Clearly
by angle-angle and
by Hypotenuse Leg.
Manipulating similar triangles gives us