Difference between revisions of "Mock AIME 2 2006-2007 Problems/Problem 10"

m (Solution)
Line 12: Line 12:
 
As <math>x</math> is real,  <math>\cos^22x\ge 0\implies \cos^22x=\frac12\implies 2\cos^22x=1</math>
 
As <math>x</math> is real,  <math>\cos^22x\ge 0\implies \cos^22x=\frac12\implies 2\cos^22x=1</math>
  
So, <math>\cos4x=0\implies 4x=(2n+1)90^\circ</math> where <math>n</math> is any integer.
+
Hence, <math>\cos4x=0\implies 4x=(2n+1)90^\circ</math> where <math>n</math> is any integer.
  
 
So,  <math>0\le (2n+1)90\le2007\implies  -\frac12\le n\le \frac{213}{20}<11\implies 0\le n\le10</math>
 
So,  <math>0\le (2n+1)90\le2007\implies  -\frac12\le n\le \frac{213}{20}<11\implies 0\le n\le10</math>

Revision as of 12:39, 31 January 2013

Problem

Find the number of solutions, in degrees, to the equation $\sin^{10}x + \cos^{10}x = \frac{29}{16}\cos^4 2x,$ where $0^\circ \le x^\circ \le 2007^\circ.$

Solution

We know $\cos2x=2\cos^2x-1=1-2\sin^2x$

So, $\left(\frac{1-\cos2x}2\right)^5+\left(\frac{1+\cos2x}2\right)^5=\frac{29}{16}\cos^42x$

On Simplification, $24\cos^42x-10\cos^22x-1=0\implies 24(\cos^22x)^2-10\cos^22x-1=0$

So, $\cos^22x=\frac{10\pm \sqrt{10^2-4\cdot24\cdot(-1)}}{2\cdot24}=\frac12$ or $-\frac1{12}$

As $x$ is real, $\cos^22x\ge 0\implies \cos^22x=\frac12\implies 2\cos^22x=1$

Hence, $\cos4x=0\implies 4x=(2n+1)90^\circ$ where $n$ is any integer.

So, $0\le (2n+1)90\le2007\implies  -\frac12\le n\le \frac{213}{20}<11\implies 0\le n\le10$

See Also

Mock AIME 2 2006-2007 (Problems, Source)
Preceded by
Problem 9
Followed by
Problem 11
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15