Difference between revisions of "2013 AMC 10A Problems/Problem 25"
(→Solution) |
|||
Line 3: | Line 3: | ||
<math> \textbf{(A)}\ 49\qquad\textbf{(B)}\ 65\qquad\textbf{(C)}\ 70\qquad\textbf{(D)}\ 96\qquad\textbf{(E)}\ 128 </math> | <math> \textbf{(A)}\ 49\qquad\textbf{(B)}\ 65\qquad\textbf{(C)}\ 70\qquad\textbf{(D)}\ 96\qquad\textbf{(E)}\ 128 </math> | ||
− | |||
− | |||
− | |||
− |
Revision as of 15:17, 7 February 2013
All 20 diagonals are drawn in a regular octagon. At how many distinct points in the interior of the octagon (not on the boundary) do two or more diagonals intersect?