Difference between revisions of "2012 AMC 10B Problems/Problem 3"

(Solution)
Line 8: Line 8:
  
 
The line <math>y = 2000</math> is a horizontal line located <math>12</math> units beneath the point <math>(1000, 2012)</math>. When a point is reflected about a horizontal line, only the <math>y</math> - coordinate will change. The <math>x</math> - coordinate remains the same. Since the <math>y</math>-coordinate of the point is <math>12</math> units above the line of reflection, the new <math>y</math> - coordinate  will be <math>2000 - 12 = 1988</math>. Thus, the coordinates of the reflected point are <math>(1000, 1988)</math>. <math>\boxed{\textbf{(B)}}</math>
 
The line <math>y = 2000</math> is a horizontal line located <math>12</math> units beneath the point <math>(1000, 2012)</math>. When a point is reflected about a horizontal line, only the <math>y</math> - coordinate will change. The <math>x</math> - coordinate remains the same. Since the <math>y</math>-coordinate of the point is <math>12</math> units above the line of reflection, the new <math>y</math> - coordinate  will be <math>2000 - 12 = 1988</math>. Thus, the coordinates of the reflected point are <math>(1000, 1988)</math>. <math>\boxed{\textbf{(B)}}</math>
 +
{{MAA Notice}}

Revision as of 12:14, 4 July 2013

Problem

The point in the $xy$-plane with coordinates (1000, 2012) is reflected across the line $y=2000$. What are the coordinates of the reflected point?

$\textbf{(A)}\ (998,2012)\qquad\textbf{(B)}\ (1000,1988)\qquad\textbf{(C)}\ (1000,2024)\qquad\textbf{(D)}\ (1000,4012)\qquad\textbf{(E)}\ (1012,2012)$

Solution

The line $y = 2000$ is a horizontal line located $12$ units beneath the point $(1000, 2012)$. When a point is reflected about a horizontal line, only the $y$ - coordinate will change. The $x$ - coordinate remains the same. Since the $y$-coordinate of the point is $12$ units above the line of reflection, the new $y$ - coordinate will be $2000 - 12 = 1988$. Thus, the coordinates of the reflected point are $(1000, 1988)$. $\boxed{\textbf{(B)}}$ The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png