Difference between revisions of "1991 AHSME Problems/Problem 24"

(Created page with "The graph, <math>G</math> of <math>y=\log_{10}x</math> is rotated <math>90^{\circ}</math> counter-clockwise about the origin to obtain a new graph <math>G'</math>. Which of the f...")
 
Line 2: Line 2:
  
 
(A) <math>y=\log_{10}\left(\frac{x+90}{9}\right)</math> (B) <math>y=\log_{x}10</math> (C) <math>y=\frac{1}{x+1}</math> (D) <math>y=10^{-x}</math> (E) <math>y=10^x</math>
 
(A) <math>y=\log_{10}\left(\frac{x+90}{9}\right)</math> (B) <math>y=\log_{x}10</math> (C) <math>y=\frac{1}{x+1}</math> (D) <math>y=10^{-x}</math> (E) <math>y=10^x</math>
 +
{{MAA Notice}}

Revision as of 12:54, 5 July 2013

The graph, $G$ of $y=\log_{10}x$ is rotated $90^{\circ}$ counter-clockwise about the origin to obtain a new graph $G'$. Which of the following is an equation for $G'$?

(A) $y=\log_{10}\left(\frac{x+90}{9}\right)$ (B) $y=\log_{x}10$ (C) $y=\frac{1}{x+1}$ (D) $y=10^{-x}$ (E) $y=10^x$ The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png