Difference between revisions of "Permutation"
Line 3: | Line 3: | ||
An important question is how many ways to pick an r-element subset of a set with n elements, where order matters. To find how many ways we can do this, note that for the first of the r elements, we have n different objects we can choose from. For the second element, there are (n-1) objects we can choose, (n-2) for the third, and so on. In general, the number of ways to permute r objects from a set of n is given by | An important question is how many ways to pick an r-element subset of a set with n elements, where order matters. To find how many ways we can do this, note that for the first of the r elements, we have n different objects we can choose from. For the second element, there are (n-1) objects we can choose, (n-2) for the third, and so on. In general, the number of ways to permute r objects from a set of n is given by | ||
<math>P(n,r)=n(n-1)(n-2)\cdots(n-r+1)=\frac{n!}{(n-r)!}</math>. | <math>P(n,r)=n(n-1)(n-2)\cdots(n-r+1)=\frac{n!}{(n-r)!}</math>. | ||
+ | |||
+ | == See also == | ||
+ | * [[Combinatorics]] | ||
+ | |||
+ | {{stub}} |
Revision as of 18:33, 8 August 2006
A permutation of a set of r objects is any rearrangement of the r objects. There are (the factorial of r) permutations of a set with r objects.
An important question is how many ways to pick an r-element subset of a set with n elements, where order matters. To find how many ways we can do this, note that for the first of the r elements, we have n different objects we can choose from. For the second element, there are (n-1) objects we can choose, (n-2) for the third, and so on. In general, the number of ways to permute r objects from a set of n is given by .
See also
This article is a stub. Help us out by expanding it.