Difference between revisions of "2006 AIME I Problems/Problem 10"

 
m
Line 1: Line 1:
 
== Problem ==
 
== Problem ==
 
Eight circles of diameter 1 are packed in the first quadrant of the coordinte plane as shown. Let region <math> \mathcal{R} </math> be the union of the eight circular regions. Line <math> l, </math> with slope 3, divides <math> \mathcal{R} </math> into two regions of equal area. Line <math> l </math>'s equation can be expressed in the form <math> ax=by+c, </math> where <math> a, b, </math> and <math> c </math> are positive integers whose greatest common divisor is 1. Find <math> a^2+b^2+c^2. </math>  
 
Eight circles of diameter 1 are packed in the first quadrant of the coordinte plane as shown. Let region <math> \mathcal{R} </math> be the union of the eight circular regions. Line <math> l, </math> with slope 3, divides <math> \mathcal{R} </math> into two regions of equal area. Line <math> l </math>'s equation can be expressed in the form <math> ax=by+c, </math> where <math> a, b, </math> and <math> c </math> are positive integers whose greatest common divisor is 1. Find <math> a^2+b^2+c^2. </math>  
 +
 +
 +
 +
  
 
== Solution ==
 
== Solution ==
 +
 +
 +
  
 
== See also ==
 
== See also ==
* [[2006 AIME I]]
+
* [[2006 AIME I Problems]]

Revision as of 11:14, 30 June 2006

Problem

Eight circles of diameter 1 are packed in the first quadrant of the coordinte plane as shown. Let region $\mathcal{R}$ be the union of the eight circular regions. Line $l,$ with slope 3, divides $\mathcal{R}$ into two regions of equal area. Line $l$'s equation can be expressed in the form $ax=by+c,$ where $a, b,$ and $c$ are positive integers whose greatest common divisor is 1. Find $a^2+b^2+c^2.$



Solution

See also