Difference between revisions of "2008 AMC 10A Problems/Problem 7"

(Solution)
Line 9: Line 9:
 
Notice that <math>9</math> can be factored out of the numerator:
 
Notice that <math>9</math> can be factored out of the numerator:
 
<cmath>\frac{\left(3^{2008}\right)^2-\left(3^{2006}\right)^2}{\left(3^{2007}\right)^2-\left(3^{2005}\right)^2}=\frac{9\left(3^{2007}\right)^2-9\left(3^{2005}\right)^2}{\left(3^{2007}\right)^2-\left(3^{2005}\right)^2}=9\cdot\frac{\left(3^{2007}\right)^2-\left(3^{2005}\right)^2}{\left(3^{2007}\right)^2-\left(3^{2005}\right)^2}</cmath>
 
<cmath>\frac{\left(3^{2008}\right)^2-\left(3^{2006}\right)^2}{\left(3^{2007}\right)^2-\left(3^{2005}\right)^2}=\frac{9\left(3^{2007}\right)^2-9\left(3^{2005}\right)^2}{\left(3^{2007}\right)^2-\left(3^{2005}\right)^2}=9\cdot\frac{\left(3^{2007}\right)^2-\left(3^{2005}\right)^2}{\left(3^{2007}\right)^2-\left(3^{2005}\right)^2}</cmath>
Thus, the expression is equal to <math>9</math>, and the answer is <math>\mathrm{(E)}</math>.
+
Thus, the expression is equa to <math>9</math>, and the answer is <math>\mathrm{(E)}</math>.
  
 
==See also==
 
==See also==
 
{{AMC10 box|year=2008|ab=A|num-b=6|num-a=8}}
 
{{AMC10 box|year=2008|ab=A|num-b=6|num-a=8}}
 
{{MAA Notice}}
 
{{MAA Notice}}

Revision as of 18:19, 10 February 2016

Problem

The fraction \[\frac{\left(3^{2008}\right)^2-\left(3^{2006}\right)^2}{\left(3^{2007}\right)^2-\left(3^{2005}\right)^2}\] simplifies to which of the following?

$\mathrm{(A)}\ 1\qquad\mathrm{(B)}\ \frac{9}{4}\qquad\mathrm{(C)}\ 3\qquad\mathrm{(D)}\ \frac{9}{2}\qquad\mathrm{(E)}\ 9$

Solution

Notice that $9$ can be factored out of the numerator: \[\frac{\left(3^{2008}\right)^2-\left(3^{2006}\right)^2}{\left(3^{2007}\right)^2-\left(3^{2005}\right)^2}=\frac{9\left(3^{2007}\right)^2-9\left(3^{2005}\right)^2}{\left(3^{2007}\right)^2-\left(3^{2005}\right)^2}=9\cdot\frac{\left(3^{2007}\right)^2-\left(3^{2005}\right)^2}{\left(3^{2007}\right)^2-\left(3^{2005}\right)^2}\] Thus, the expression is equa to $9$, and the answer is $\mathrm{(E)}$.

See also

2008 AMC 10A (ProblemsAnswer KeyResources)
Preceded by
Problem 6
Followed by
Problem 8
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png