Difference between revisions of "2011 AMC 10B Problems/Problem 23"
Line 1: | Line 1: | ||
− | == | + | ==Solution== |
+ | |||
+ | '''Solution 1:''' | ||
+ | |||
+ | Since <math>2011 \equiv 11 \pmod{1000},</math> we know that <math>2011^{2011} \equiv 11^{2011} \pmod{1000}.</math> | ||
− | + | To compute this, we use a clever application of the [[binomial theorem]]. | |
− | < | + | <cmath>\begin{aligned} 11^{2011} &= (1+10)^{2011} \\ &= 1 + \dbinom{2011}{1} \cdot 10 + \dbinom{2011}{2} \cdot 10^2 + \cdots \end{aligned}</cmath> |
+ | |||
+ | In all of the other terms, the power of <math>10</math> is greater than <math>3</math> and so is equivalent to <math>0</math> modulo <math>1000,</math> which means we can ignore it. We have: | ||
+ | |||
+ | <cmath>\begin{aligned}11^{2011} &= 1 + 2011\cdot 10 + \dfrac{2011 \cdot 2010}{2} \cdot 100 \\ &\equiv 1+20110 + \dfrac{11\cdot 10}{2} \cdot 100\\ &= 1 + 20110 + 5500\\ &\equiv 1 + 110 + 500\\&=611 \pmod{1000} \end{aligned}</cmath> | ||
+ | |||
+ | Therefore, the hundreds digit is <math>\boxed{\textbf{(D) } 6}.</math> | ||
− | |||
− | |||
− | + | '''Solution 2:''' | |
− | < | + | We need to compute <math>2011^{2011} \pmod{1000}.</math> By the Chinese Remainder Theorem, it suffices to compute <math>2011^{2011} \pmod{8}</math> and <math>2011^{2011} \pmod{125}.</math> |
− | |||
− | < | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | + | In modulo <math>8,</math> we have <math>2011^4 \equiv 1 \pmod{8}</math> by [[Euler's_Totient_Theorem| Euler's Theorem]], and also <math>2011 \equiv 3 \pmod{8},</math> so we have <cmath>2011^{2011} = (2011^4)^{502} \cdot 2011^3 \equiv 1^{502} \cdot 3^3 \equiv 3 \pmod{8}.</cmath> | |
− | == | + | In modulo <math>125,</math> we have <math>2011^{100} \equiv 1 \pmod{125}</math> by Euler's Theorem, and also <math>2011 \equiv 11 \pmod{125}.</math> Therefore, we have <cmath>\begin{aligned} 2011^{2011} &= (2011^{100})^{20} \cdot 2011^{11} \\ &\equiv 1^{20} \cdot 11^{11} \\ &= 121^5 \cdot 11 \\ &= (-4)^5 \cdot 11 = -1024 \cdot 11 \\ &\equiv -24 \cdot 11 = -264 \\ &\equiv 111 \pmod{125}. \end{aligned} </cmath> |
− | { | + | After finding the solution <math>2011^{2011} \equiv 611 \pmod{1000},</math> we conclude it is the only one by the Chinese Remainder Theorem. Thus, the hundreds digit is <math>\boxed{\textbf{(D) } 6}.</math> |
− | {{ |
Revision as of 14:50, 17 August 2013
Solution
Solution 1:
Since we know that
To compute this, we use a clever application of the binomial theorem.
\begin{aligned} 11^{2011} &= (1+10)^{2011} \\ &= 1 + \dbinom{2011}{1} \cdot 10 + \dbinom{2011}{2} \cdot 10^2 + \cdots \end{aligned} (Error compiling LaTeX. Unknown error_msg)
In all of the other terms, the power of is greater than and so is equivalent to modulo which means we can ignore it. We have:
\begin{aligned}11^{2011} &= 1 + 2011\cdot 10 + \dfrac{2011 \cdot 2010}{2} \cdot 100 \\ &\equiv 1+20110 + \dfrac{11\cdot 10}{2} \cdot 100\\ &= 1 + 20110 + 5500\\ &\equiv 1 + 110 + 500\\&=611 \pmod{1000} \end{aligned} (Error compiling LaTeX. Unknown error_msg)
Therefore, the hundreds digit is
Solution 2:
We need to compute By the Chinese Remainder Theorem, it suffices to compute and
In modulo we have by Euler's Theorem, and also so we have
In modulo we have by Euler's Theorem, and also Therefore, we have
\begin{aligned} 2011^{2011} &= (2011^{100})^{20} \cdot 2011^{11} \\ &\equiv 1^{20} \cdot 11^{11} \\ &= 121^5 \cdot 11 \\ &= (-4)^5 \cdot 11 = -1024 \cdot 11 \\ &\equiv -24 \cdot 11 = -264 \\ &\equiv 111 \pmod{125}. \end{aligned} (Error compiling LaTeX. Unknown error_msg)
After finding the solution we conclude it is the only one by the Chinese Remainder Theorem. Thus, the hundreds digit is