Difference between revisions of "2007 AIME I Problems/Problem 3"

(Problem)
Line 1: Line 1:
 
== Problem ==
 
== Problem ==
The [[complex number]] <math>z</math> is equal to <math>9+bi</math>, where <math>b</math> is a [[positive]] [[real number]] and <math>i^{2}=-1</math>.  Given that the imaginary parts of <math>z^{2}</math> and <math>z^{3}</math> are the same, what is <math>b</math> equal to?
+
<!-- don't remove the following tag, for PoTW on the Wiki front page--><onlyinclude>The [[complex number]] <math>z</math> is equal to <math>9+bi</math>, where <math>b</math> is a [[positive]] [[real number]] and <math>i^{2}=-1</math>.  Given that the imaginary parts of <math>z^{2}</math> and <math>z^{3}</math> are the same, what is <math>b</math> equal to?<!-- don't remove the following tag, for PoTW on the Wiki front page--></onlyinclude>
  
 
== Solution ==
 
== Solution ==

Revision as of 18:16, 11 November 2015

Problem

The complex number $z$ is equal to $9+bi$, where $b$ is a positive real number and $i^{2}=-1$. Given that the imaginary parts of $z^{2}$ and $z^{3}$ are the same, what is $b$ equal to?

Solution

Squaring, we find that $(9 + bi)^2 = 81 + 18bi - b^2$. Cubing and ignoring the real parts of the result, we find that $(81 + 18bi - b^2)(9 + bi) = \ldots + (9\cdot 18 + 81)bi - b^3i$.

Setting these two equal, we get that $18bi = 243bi - b^3i$, so $b(b^2 - 225) = 0$ and $b = -15, 0, 15$. Since $b > 0$, the solution is $015$.

See also

2007 AIME I (ProblemsAnswer KeyResources)
Preceded by
Problem 2
Followed by
Problem 4
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
All AIME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png