Difference between revisions of "Power of a Point Theorem/Introductory Problem 3"

m (proofreading)
 
Line 7: Line 7:
 
Letting <math> AR = x </math> makes <math> BR = 4x </math>.  Similarly, letting <math> CR = 4y </math> makes <math> DR = 9y </math>.  Thus <math> AB = AR + BR = x + 4x = 5x </math> and <math> CD = CR + DR = 4y + 9y = 13y </math>.  We therefore seek <math> \frac{AB}{CD} = \frac{5x}{13y} </math>.
 
Letting <math> AR = x </math> makes <math> BR = 4x </math>.  Similarly, letting <math> CR = 4y </math> makes <math> DR = 9y </math>.  Thus <math> AB = AR + BR = x + 4x = 5x </math> and <math> CD = CR + DR = 4y + 9y = 13y </math>.  We therefore seek <math> \frac{AB}{CD} = \frac{5x}{13y} </math>.
  
From the Power of a Point Theorem we have that  
+
From the Power of a Point Theorem, we have that  
  
<center><math> x\cdot 4x = 4y\cdot 9y\Rightarrow \left(\frac xy\right)^2 = 9 </math></center>
+
<center><math> x\cdot 4x = 4y\cdot 9y\Rightarrow \left(\frac xy\right)^2 = 9 </math>,</center>
  
which gives <math>  \frac xy = \pm 3 </math> so we take <math> \frac xy = 3 </math>.
+
which gives <math>  \frac xy = \pm 3 </math>, so we take <math> \frac xy = 3 </math>.
  
Finally  
+
Finally,
  
 
<center><math> \frac{5x}{13y}=\frac 5{13}\cdot \frac xy = \frac 5{13}\cdot 3 = \frac{15}{13}. </math></center>
 
<center><math> \frac{5x}{13y}=\frac 5{13}\cdot \frac xy = \frac 5{13}\cdot 3 = \frac{15}{13}. </math></center>
  
 
''Back to the [[Power of a Point Theorem]].''
 
''Back to the [[Power of a Point Theorem]].''

Latest revision as of 13:40, 3 July 2006

Problem

(ARML) In a circle, chords $AB$ and $CD$ intersect at $R$. If $AR:BR = 1:4$ and $CR:DR = 4:9$, find the ratio $AB:CD.$

Popprob3.PNG

Solution

Letting $AR = x$ makes $BR = 4x$. Similarly, letting $CR = 4y$ makes $DR = 9y$. Thus $AB = AR + BR = x + 4x = 5x$ and $CD = CR + DR = 4y + 9y = 13y$. We therefore seek $\frac{AB}{CD} = \frac{5x}{13y}$.

From the Power of a Point Theorem, we have that

$x\cdot 4x = 4y\cdot 9y\Rightarrow \left(\frac xy\right)^2 = 9$,

which gives $\frac xy = \pm 3$, so we take $\frac xy = 3$.

Finally,

$\frac{5x}{13y}=\frac 5{13}\cdot \frac xy = \frac 5{13}\cdot 3 = \frac{15}{13}.$

Back to the Power of a Point Theorem.