Difference between revisions of "1962 AHSME Problems/Problem 8"
(Created page with "==Problem== Given the set of n<math></math> numbers; <math>n > 1</math>, of which one is <math>1 - \frac {1}{n}</math> and all the others are <math>1</math>. The arithmetic mean...") |
(→Problem) |
||
Line 1: | Line 1: | ||
==Problem== | ==Problem== | ||
− | Given the set of | + | Given the set of <math>n</math> numbers; <math>n > 1</math>, of which one is <math>1 - \frac {1}{n}</math> and all the others are <math>1</math>. The arithmetic mean of the <math>n</math> numbers is: |
<math> \textbf{(A)}\ 1\qquad\textbf{(B)}\ n-\frac{1}{n}\qquad\textbf{(C)}\ n-\frac{1}{n^2}\qquad\textbf{(D)}\ 1-\frac{1}{n^2}\qquad\textbf{(E)}\ 1-\frac{1}{n}-\frac{1}{n^2} </math> | <math> \textbf{(A)}\ 1\qquad\textbf{(B)}\ n-\frac{1}{n}\qquad\textbf{(C)}\ n-\frac{1}{n^2}\qquad\textbf{(D)}\ 1-\frac{1}{n^2}\qquad\textbf{(E)}\ 1-\frac{1}{n}-\frac{1}{n^2} </math> |
Revision as of 21:31, 9 November 2013
Problem
Given the set of numbers; , of which one is and all the others are . The arithmetic mean of the numbers is:
Solution
"Unsolved"