Difference between revisions of "Incircle"
Claudeaops (talk | contribs) |
Claudeaops (talk | contribs) m (Fix Link) |
||
Line 3: | Line 3: | ||
[[Image:Incenter.PNG|left|thumb|300px|Triangle ''ABC'' with [[incenter]] ''I'', with [[angle bisector]]s (red), [[incircle]] (blue), and [[inradius|inradii]] (green)]] | [[Image:Incenter.PNG|left|thumb|300px|Triangle ''ABC'' with [[incenter]] ''I'', with [[angle bisector]]s (red), [[incircle]] (blue), and [[inradius|inradii]] (green)]] | ||
− | An '''incircle''' of a [[convex]] [[polygon]] is a [[circle]] which is inside the figure and [[tangent line | tangent]] to each side. Every [[triangle]] and [[regular polygon]] has a unique incircle, but in general polygons with 4 or more sides (such as non-[[square (geometry) | square]] [[rectangle]]s) do not have an incircle. | + | An '''incircle''' of a [[convex]] [[polygon]] is a [[circle]] which is inside the figure and [[tangent line | tangent]] to each side. Every [[triangle]] and [[regular polygon]] has a unique incircle, but in general polygons with 4 or more sides (such as non-[[square (geometry) | square]] [[rectangle]]s) do not have an incircle. A quadrilaterals that does have an incircle is called a [[Tangential Quadrilateral]]. |
==Formulas== | ==Formulas== |
Revision as of 14:16, 1 January 2014
This article is a stub. Help us out by expanding it.
An incircle of a convex polygon is a circle which is inside the figure and tangent to each side. Every triangle and regular polygon has a unique incircle, but in general polygons with 4 or more sides (such as non- square rectangles) do not have an incircle. A quadrilaterals that does have an incircle is called a Tangential Quadrilateral.
Formulas
- The radius of an incircle of a triangle (the inradius) with sides and area is
- The radius of an incircle of a right triangle (the inradius) with legs and hypotenuse is .
- For any polygon with an incircle, , where is the area, is the semiperimeter, and is the inradius.