Difference between revisions of "2014 AMC 12B Problems/Problem 12"
(→Solution) |
(→Solution) |
||
Line 2: | Line 2: | ||
Define <math>T</math> to be the set of all triples <math>(a, b, c)</math> such that <math>a \ge b \ge c</math>, <math>b+c > a</math>, and <math>a, b, c \le 5</math>. Now we enumerate the elements of <math>T</math>: | Define <math>T</math> to be the set of all triples <math>(a, b, c)</math> such that <math>a \ge b \ge c</math>, <math>b+c > a</math>, and <math>a, b, c \le 5</math>. Now we enumerate the elements of <math>T</math>: | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
<math>(4, 4, 4)</math> | <math>(4, 4, 4)</math> |
Revision as of 21:20, 20 February 2014
Solution
Define to be the set of all triples such that , , and . Now we enumerate the elements of :
It should be clear that is simply , where is the number of triples such that there exists at least one triple where and . So, is... and the answer is ... ...