Difference between revisions of "Semiperimeter"

(fixed typos and added A=rs)
(Applications)
Line 2: Line 2:
  
  
 +
{{stub}}
 
==Applications==
 
==Applications==
 
The semiperimeter has many uses in geometric formulas.  Perhaps the simplest is <math>A=rs</math>, where <math>A</math> is the [[area]] of a [[triangle]] and <math>r</math> is the triangle's [[inradius]] (that is, the [[radius]] of the [[circle]] [[inscribed]] in the triangle).   
 
The semiperimeter has many uses in geometric formulas.  Perhaps the simplest is <math>A=rs</math>, where <math>A</math> is the [[area]] of a [[triangle]] and <math>r</math> is the triangle's [[inradius]] (that is, the [[radius]] of the [[circle]] [[inscribed]] in the triangle).   
  
 
Two other well-known examples of formulas involving the semiperimeter are [[Heron's formula]] and [[Brahmagupta's formula]].
 
Two other well-known examples of formulas involving the semiperimeter are [[Heron's formula]] and [[Brahmagupta's formula]].

Revision as of 23:28, 30 December 2020

The semiperimeter of a geometric figure is one half of the perimeter, or $\frac{P}{2}$, where $P$ is the total perimeter of a figure. It is typically denoted $s$.


This article is a stub. Help us out by expanding it.

Applications

The semiperimeter has many uses in geometric formulas. Perhaps the simplest is $A=rs$, where $A$ is the area of a triangle and $r$ is the triangle's inradius (that is, the radius of the circle inscribed in the triangle).

Two other well-known examples of formulas involving the semiperimeter are Heron's formula and Brahmagupta's formula.