Difference between revisions of "2006 IMO Problems/Problem 3"

(Created page with "==Problem== Determine the least real number <math>M</math> such that the inequality <math> \left|ab\left(a^{2}-b^{2}\right)+bc\left(b^{2}-c^{2}\right)+ca\left(c^{2}-a^{2}\right)|...")
 
m (Problem)
Line 1: Line 1:
 
==Problem==
 
==Problem==
Determine the least real number <math>M</math> such that the inequality <math> \left|ab\left(a^{2}-b^{2}\right)+bc\left(b^{2}-c^{2}\right)+ca\left(c^{2}-a^{2}\right)|\leq M\left(a^{2}+b^{2}+c^{2}\right)^{2} </math> holds for all real numbers <math>a,b</math> and <math>c</math>
+
Determine the least real number <math>M</math> such that the inequality <math> \left|ab\left(a^{2}-b^{2}\right)\right+bc\left(b^{2}-c^{2}\right)+ca\left(c^{2}-a^{2}\right)|\leq M\left(a^{2}+b^{2}+c^{2}\right)^{2} </math> holds for all real numbers <math>a,b</math> and <math>c</math>
  
 
==Solution==
 
==Solution==
 
.
 
.

Revision as of 19:30, 8 April 2015

Problem

Determine the least real number $M$ such that the inequality $\left|ab\left(a^{2}-b^{2}\right)\right+bc\left(b^{2}-c^{2}\right)+ca\left(c^{2}-a^{2}\right)|\leq M\left(a^{2}+b^{2}+c^{2}\right)^{2}$ (Error compiling LaTeX. Unknown error_msg) holds for all real numbers $a,b$ and $c$

Solution

.