Difference between revisions of "2006 AMC 12A Problems/Problem 23"
m (2006 AMC 12A Problem 23 moved to 2006 AMC 12A Problems/Problem 23) |
|||
Line 1: | Line 1: | ||
== Problem == | == Problem == | ||
+ | |||
+ | Given a finite sequence <math>S=(a_1,a_2,\ldots ,a_n)</math> of <math>n</math> real numbers, let <math>A(S)</math> be the sequence | ||
+ | |||
+ | <math>(\frac{a_1+a_2}{2},\frac{a_2+a_3}{2},\ldots ,\frac{a_{n-1}+a_n}{2})</math> | ||
+ | |||
+ | of <math>n-1</math> real numbers. Define <math>A^1(S)=A(S)</math> and, for each integer <math>m</math>, <math>2\le m\le n-1</math>, define <math>A^m(S)=A(A^{m-1}(S))</math>. Suppose <math>x>0</math>, and let <math>S=(1,x,x^2,\ldots ,x^{100})</math>. If <math>A^{100}(S)=(1/2^{50})</math>, then what is <math>x</math>? | ||
+ | |||
+ | <math> \mathrm{(A) \ } 1-\frac{\sqrt{2}}{2}\qquad \mathrm{(B) \ } \sqrt{2}-1\qquad \mathrm{(C) \ } \frac{1}{2}\qquad \mathrm{(D) \ } 2-\sqrt{2}\qquad \mathrm{(E) \ } \frac{\sqrt{2}}{2}</math> | ||
== Solution == | == Solution == |
Revision as of 23:10, 10 July 2006
Problem
Given a finite sequence of real numbers, let be the sequence
of real numbers. Define and, for each integer , , define . Suppose , and let . If , then what is ?